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Consider a quantum system (atom, spins etc.) under the influence of a Hamiltonian Ĥ0

perturbed by a (possibly time-dependent) perturbation V̂ : Ĥ(t) = Ĥ0 + V̂ . Under the effect
of the perturbation, the system “jumps” between two eigenstates |i(t)〉 and |f(t)〉 of the
unperturbed Hamiltonian.

Note that the subscripts i and f meaning, respectively, “initial” and “final”, are not defined
with respect to time flow but simply as different dynamical states of the system, which can

evolve separately as |i(0)〉 → |i(t)〉 = e−i E
(0)
i t/~ |i(0)〉 and |f(0)〉 → |f(t)〉 = e−i E

(0)
f t/~ |f(0)〉.

If the perturbation is explicitly time-dependent i.e. V̂ (t) = Â f(t), the amplitude for the
system undergoing the transition is, to first order in V :

cf (t) = δfi −
i

h

∫ t

0

dt′ e
i
(
E

(0)
f −E

(0)
i

)
t′/~ 〈f(t′)| V̂ (t′) |i(t′)〉

≡ δfi −
i

h

∫ t

0

dt′ ei ωfi t
′
Vfi(t

′), (1)

where ωfi ≡
(
E

(0)
f − E

(0)
i

)
/~ ≡ Efi/~ is the transition frequency.

Note the effect of the Kronecker delta:

• if f = i, then

cf (t) = 1− i

h

∫ t

0

dt′ Vii(t
′)

• if f 6= i, then

cf (t) = − i
h

∫ t

0

dt′ei ωfi t
′
Vfi(t

′)

The i→ f transition probability is (for i 6= f):

Pif (t) = |cf (t)|2 =
1

~2
| 〈f(t)| Â |i(t)〉 |2 |F (ωfi, t)|2 , (2)
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where F (ωfi, t) =
∫ t

0
dt′ f(t′) exp(i ωfi t

′). A transition probability rate Γif can be obtained
by taking the time derivative of Eq.(2). Depending on the form of f(t), this rate may or
may not be time-dependent. Some authors call this Fermi’s Golden Rule (or simply the
Golden Rule, since it was actually Dirac who first pointed out its utility). To get a feel
for the implications of Eq. (2), consider an elastically bound charge in a transient uniform
electric field) or a spin-1/2 charged particle in a time-dependent magnetic field (magnetic
resonance).

Nevertheless, the real power of FGR is associated with perturbations that are either
oscillatory (e.g. atom–light interactions) or time-independent (e.g. scattering). For harmonic
perturbations (V̂ = V̂0 e

± i ω t), FGR becomes:

Γif ≡
dPif

dt
=

2π

~
| 〈f | V̂ |i〉 |2 δ

(
E

(0)
f − E

(0)
i ± ~ω

)
, (3)

which can be generalized to

Γif ≡
dPif

dt
=

2π

~
| 〈f | V̂ |i〉 |2 δ

(
E

(0)
f − E

(0)
i ± E

)
. (4)

The most striking feature of Eqs. (3, 4) is that the energy levels (E
(0)
i,f ) involved in the

transition are infinitely sharp—a quite restrictive requirement. In many cases, processes
such as Doppler or collision broadening cause transitions to occur from an energy level to
an energy band (or continuum), characterized by a spread in energy (Ef , Ef + dEf ) or
momentum (kf ,kf +dkf ). In this case, the “barebones” expressions (3, 4) must be summed
over all the energies (or momenta) in the continuum. The net outcome is that Eqs. (3,
4) now define an infinitesimal transition rate (i.e. Γif → dΓif ), whereby the Dirac delta

function—the condition of resonant absorption/emission between E
(0)
i,f —is replaced by the

distribution of modes per unit energy interval, i.e. the energy density ρ(E)dΩ:

dΓif =
2π

~
| 〈f | V̂ |i〉 |2 ρ(E)dΩ

hence

Γif =

∫
dΓif =

∫
2π

~
| 〈f | V̂ |i〉 |2 ρ(E)dΩ (5)

Eq. (5) can be summed, if needed, over various other degrees of freedom involved (e.g. spin
states, polarization directions etc.). The density of states can be expressed in terms of the
energy spectrum as follows:

• in momentum (wavenumber) space,

ρ(E)dΩ =
V

(2π)3
k2
(
dk

dE

)
dΩ,
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• in frequency space,

ρ(E)dΩ =
V

(2πc)3
ω2

(
dω

dE

)
dΩ.

If the transition involves a single—for now non-quantized—photon of energy E = ~ω = ~kc
(as in Eq. 3), the density of states is:

ρ(E)dΩ ≡ ρ(ω)dΩ =
V

~(2πc)3
ω2 dΩ.

We will cover applications of FGR explicitly when we study light-atom interactions: spon-
taneous/ stimulated emission, stimulated absorption, blackbody radiation.
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