
Time-Dependent (Nonstationary) Perturbation Theory
©Andi Petculescu

Consider the Hamiltonian Ĥ0 affected by a weak time-dependent perturbation Ĥ1(t):

Ĥ = Ĥ0 + λĤ1(t).

(The weakness of Ĥ1 is such that |〈k(0)|Ĥ1(t)|n(0)〉| � |E(0)
n −E(0)

k |.) As usual, the eigenstates |n(0)〉
and eigenvalues E

(0)
n of Ĥ0 are known, λ is the perturbative parameter, with values from 0 (Ĥ = Ĥ0)

to 1 (Ĥ = Ĥ0 + Ĥ1). The question we ask now is, if the system is initially (e.g. t0 = 0 or −∞) in
unperturbed state |i(0)〉, will it stay in the same state at t > 0? Equivalently, what is the probability
that it transitions to a different unperturbed state |f (0)〉?

• Known The EVP of unperturbed Hamiltonian,

Ĥ0|n(0)〉 = E(0)
n |n(0)〉, (1)

subject to the initial condition

|ψi〉 ≡ |ψ(0)〉 =
∑
n

an |n(0)〉. (2)

In these conditions, since Ĥ0 is independent of time, the system evolves simply through the
time-evolution operator Û(t) = exp (−iĤ0t/~), that is

|ψ(t)〉 = Û(t) |ψ0〉 = exp (−iĤ0t/~)
∑
n

an |n(0)〉

=
∑
n

an exp (−iE(0)
n t/~)︸ ︷︷ ︸

≡ b(0)n (t)

|n(0)〉 ≡
∑
n

b(0)n (t) |n(0)〉. (3)

The coefficients b
(0)
n (t) = an exp (−iE(0)

n t/~) ≡ an exp(−iωnt) (where ωn = E
(0)
n /~) represent

the zeroth-order i.e. unperturbed time evolution; they have an implicit time-dependence
through the unitary operator, as the solution of the associated TISE.
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• Goal Find the state of the system at t > 0 under the influence of the time-dependent
Hamiltonian i.e.

|ψ(t)〉 =
∑
n

bn(t)|n(0)〉, (4)

whose explicitly time-dependent coefficients bn(t) are to be determined. If the perturbation is

off (Ĥ1(t) = 0), the system evolution is governed solely by Ĥ0. When the perturbation is on

(Ĥ1(t) 6= 0), we introduce the time-dependent coefficients cn(t) such that

|ψ(t)〉 =
∑
n

cn(t) exp (−iE(0)
n t/~) |n(0)〉 ≡

∑
n

cn(t) exp(−iωnt) |n(0)〉 (5)

or equivalently,
bn(t) = cn(t) exp (−iE(0)

n t/~) ≡ cn(t) exp(−iωnt), (6)

will be determined by perturbations.

• Note: At this point we could insert Eq. 5 in the TDSE i.e. Ĥ|ψ(t)〉 = i~
d

dt
|ψ(t)〉, project it

onto another unperturbed state m(0) i.e. scalar-multiply by 〈m(0)|, to obtain

ċm(t) = − i
~
∑
n

cn(t)ei(E
(0)
m −E

(0)
n ) t/~ 〈m(0)|λĤ1(t)|n(0)〉

≡ − i
~
∑
n

cn(t)ei(ωm−ωn)t 〈m(0)|λĤ1(t)|n(0)〉,
(7)

subject to initial condition (Eq. 2) cm(0) = bm(0) = am. While it is usually hard to solve,
Eq. 7 is conceptually useful: for example, its most salient feature is the braket on the right,
which indicates the transition from state n to state m (of the unperturbed system).

• Seek:

cn(t)
!

=
∞∑
j=0

λj c(j)n (t) = an +
∞∑
j=1

λj c(j)n (t), (8)

where the second expression expresses the initial condition i.e.

c(0)n (t) = cn(0) = bn(0) = an. (9)

Inserting Eq. 8 in 7, one obtains a set of first-order ODEs that couple successive perturbation
orders:

∞∑
j=0

λj
d c

(j)
m (t)

dt
= − i

~

∞∑
j=0

∑
n

λj c(j)n (t) ei(ωm−ωn)t 〈m(0)|λĤ1(t)|n(0)〉

= − i
~

∞∑
j=0

∑
n

λj+1 c(j)n (t) ei(ωm−ωn)t 〈m(0)|Ĥ1(t)|n(0)〉.
(10)
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Next, we identify powers of λ on either side of Eq. 10 to obtain the state corrections to the
desired order j:

λ0

d c
(0)
m (t)

d t
= 0 ⇒ c(0)m (t) = am = const, (11)

λ1

d c
(1)
m (t)

d t
= − i

~
∑
n

c(0)n (t) eiωmnt 〈H1(t)〉mn , (12)

λ2

d c
(2)
m (t)

d t
= − i

~
∑
n

c(1)n (t) eiωmnt 〈H1(t)〉mn , and so on. (13)

Here, ωmn ≡ ωm − ωn defines the n → m transition frequency. The coefficients cm(t) of Eq. 8 are
obtained to O(λ2) by integrating Eqs. 11-13 as follows:

cm(t) = am − λ
i

~
∑
k

ak

∫ t

0

dt′ eiωmkt
′ 〈H1(t

′)〉mk

+ λ2
(
− i
~

)2∑
k

∑
p

ap

∫ t

0

dt′
∫ t′

0

dt′′ eiωmkt
′
eiωkpt

′′ 〈H1(t
′)〉mk 〈H1(t

′′)〉kp +O(λ3).

(14)

According to Eq. 6, the coefficients bm(t) needed for the perturbed state |ψ(t)〉 of Eq. 4 are obtained
simply by multiplying Eq. 14 by exp (−iωnt). (Note: the resulting expression can also be obtained
using the Interaction Picture of quantum mechanics e.g. Eq. 18.3.27 in Shankar (with t0 = 0),
14.119 in Townsend etc.)

In what follows, I use the subscript f for final states i.e. change m to f . Thus the coefficients in Eq. 14

become cf (t) = af + c
(1)
f (t) + c

(2)
f (t) + ....

The probability that at time t, the system transitions to final state |ψ(0)
f 〉 (which can be one particular

unperturbed state or a superposition of unperturbed states) is

Pfi(t) = |〈ψ(0)
f |ψ(t)〉|2.
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• Final state is a superposition of unperturbed states i.e.|ψ(0)
f 〉 =

∑∑∑
n gn|n(0)〉 :

Pfi(t) =

∣∣∣∣∣∑
n

g∗n bn(t)

∣∣∣∣∣
2

=

∣∣∣∣∣∑
n

g∗n cn(t) e−i ωnt

∣∣∣∣∣
2

.

• Final state is unperturbed state f i.e. |ψ(0)
f 〉 = |f (0)〉 :

Pfi(t) = |〈f (0)|ψ(t)〉|2 = |bf (t)|2 = |cf (t)|2

= |af + c
(1)
f (t) + c

(2)
f (t) + ...|2

(15)

Furthermore, if the initial state is unperturbed state i i.e. |ψi〉 = |i(0)〉, we have, from Eq. 2

|ψi〉 = |i(0)〉 =
∑
m

δmi|m(0)〉 ⇒ am = δmi = cm(0) = c(0)m (t).

Consequently, Eq. 14 becomes, setting λ = 1,

cf (t) = δfi + c
(1)
f (t) + c

(2)
f (t) + ...

= δfi −
i

~

∫ t

0

dt′ ei ωfit
′ 〈H1(t

′)〉fi +

(
−i
~

)2 ∫ t

0

dt′
∫ t′

0

dt′′ ei ωfkt
′
ei ωkit

′′ 〈H1(t
′)〉fk 〈H1(t

′′)〉ki + ...

(16)

and the i→ f transition probability Pfi(t) = |cf (t)|2 = |c(1)f (t) + c
(2)
f (t) + ...|2.

Applications

Here we calculate the transition probabilities for a few simple perturbing potentials, to first-order.

1. Constant perturbation

If Ĥ1 = V̂ = constant, then

Pfi(t) = |c(1)f (t)|2 =

∣∣∣∣−i~
∫ t

0

dt′ ei ωfit
′
Vfi

∣∣∣∣2

=
1

~2
|Vfi|2

∣∣∣∣∫ t

0

dt′ ei ωfit
′
∣∣∣∣2 = 4

|Vfi|2

~2 ω2
fi

sin2

(
ωfi t

2

)

=
|Vfi|2

~2
π t

[
sin2(ωfi t/2)

π t (ωfi/2)2

]
(17)
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with Vfi = 〈ψf |V̂ |ψi〉 and ωfi = (E
(0)
f − E

(0)
i )/~. In the long-time limit (t � ω−1fi i.e. long enough

after the transition has occurred), the bracketed factor on the last line of Eq. 17 reduces to a
Dirac-delta function (using Eqs. A.2 and A.4) as follows:

Pfi(t)
t→∞−→ π t

|Vfi|2

~2
δ
(ωfi

2

)
= π t

|Vfi|2

~2
δ

(
E

(0)
f − E

(0
i

2~

)
=

2 π t

~
|Vfi|2 δ(E(0)

f − E
(0)
i ). (18)

The linear time dependence apparent in the transition probability is likely to pose problems since,
if one waits enough, one is bound to obtain Pfi → ∞, which is utterly nonphysical! A rough way
out is provided by introducing the transition rate, defined as the time derivative of the probability
(more on this later):

Γfi =
dPfi
dt

t→∞−→ 2π

~
|Vfi|2 δ(E(0)

f − E
(0)
i ). (19)

The Dirac delta in Eq. 19 ensures energy conservation: the constant perturbation Ĥ1 = V̂ neither
takes nor gives energy to the system—for t → ∞, transitions occur only between states with the
same energy.

2. Perodic (harmonic) perturbation

Consider a perturbation of the kind Ĥ1(t) = V̂ e±iωt i.e. driven periodically with frequency ω. Then

Pfi(t) = |c(1)f (t)|2 =

∣∣∣∣−i~
∫ t

0

dt′ ei ωfit
′ 〈H1(t

′)〉fi

∣∣∣∣2

=
1

~2
|Vfi|2

∣∣∣∣∫ t

0

dt′ ei ωfit
′
e±iωt

∣∣∣∣2 = 4
|Vfi|2

~2 (ωfi ± ω)2
sin2

[
(ωfi ± ω) t

2

]

=
|Vfi|2

~2
π t

[
sin2[(ωfi ± ω) t/2]

π t [(ωfi ± ω)/2]2

]
(20)

In the long-time approximation, the transition probability (Eq. 20) becomes

Pfi(t)
t→∞−→ 2 π t

~
|Vfi|2 δ(E(0)

f − E
(0)
i ± ~ω) (21)

and the transition rate

Γfi(t)
t→∞−→ 2 π

~
|Vfi|2 δ(E(0)

f − E
(0)
i ± ~ω) (22)

Again, the Dirac delta in Eqs. 21 and 22 represents the conservation of energy before and after the
transition. In this case, the final energy is E

(0)
f = E

(0)
i ∓~ω. The − and + signs denote, respectively,

emission and absorption of one quantum of energy ~ω. They correspond, respectively, to the e±iωt

harmonic factors in Ĥ1.
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NOTES:

1. The fact that the linear time dependence of Pfi is “conveniently” eliminated when we calculate
the transition rates does not solve the problem or superunitary probabilities long after the
transition occurs!

2. Energy conservation (via the Dirac deltas) is only valid at t→∞.

3. Eqs. 19 and 22 are approximate. They are only valid if E
(0)
f = E

(0)
i (for Ĥ1(t) = const) and

E
(0)
f = E

(0)
i ∓ ~ω (for Ĥ1(t) = periodic) precisely.

4. Eqs. 19 and 22 do not include momentum conservation.

3. Fermi’s Golden Rule

Eqs. 19 and 22 are particular cases of the Fermi’s Golden Rule (FGR). For a more realistic de-
scription, we have to account for the fact that the transitions are from an initial energy level to a
continuum of final states. The latter can be described by a density of states

ρ(Ef ) ≡
number of final states

energy interval
.

The number of states within energy interval [Ef , Ef + dEf ] is then equal to ρ(Ef ) dEf . (I am
dropping the 0 superscripts.) The total transition rate Wfi is obtained by integrating Γfi over the
final energy distribution, Wfi =

∫
Γfi ρ(Ef ) dEf . Thus, for constant perturbation we have

Wfi =
2π

~
|Vfi|2

∫
ρ(Ef ) δ(Ef − Ei) dEf =

2π

~
|Vfi|2 ρ(Ei) (23)

and for a harmonic perturbation,

Wfi =
2π

~
|Vfi|2

∫
ρ(Ef ) δ(Ef − Ei ± ~ω) dEf =

2π

~
|Vfi|2 ρ(Ei ∓ ~ω). (24)

Eqs. 23 and 24 are also embodiments of FGR.

A more detailed derivation

Consider a generic process by which a quantum system (e.g. an atom) absorbs and/or emits
a particle. Examples are scattering (such as the photoelectric, Compton, and Brillouin effects),
radiation absorption by atoms, spontaneous emission etc. For simplicity we assume a transition
involving the emission or absorption of a single particle (photon, electron, proton, neutron etc.).
The “barebones” transition rate Γfi from the initial state |φi〉 to the final state |φf〉, obtained as
the long-time limit of the transition probability per unit time, is
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Γfi = lim
t→∞

dPf
dt
≈ 2π

~
|〈φf |Ĥ1|φi〉|2 δ(Ef − Ei ± E), (25)

where Ef(i) ≡ E0
f(i) are the unperturbed energies and ±E is the energy exchanged during the

transition (+E for emission, −E for absorption). The delta function expresses energy conservation.
The (somewhat vague) long-time premise means that the detection occurs well after the duration of
the perturbation—embodied by an “evolutionary time” ∆t—during which energy is not necessarily
conserved, having an uncertainty ∆E ∼ ~/∆t. Beside the fuzzyness of the “long-time” notion,
there is another, more systemic, difficulty with Eq. 25. First, the delta function signifies that the
transition occurs between states of sharply defined energies: Ef = Ei−E (emission) or Ef = Ei+E
(absorption). The finite resolution of the detectors, however, imposes a spread of the total final
energy in an interval [E,E + δE]. Furthermore, the energy of the particle(s) exchanged does not
specify the final state completely. We typically need to know in which direction and how fast the
particles move hence their momentum range [p,p+δp]. Therefore we have to update the transition
rate to account for the final momentum and energy spreads. The solution is conceptually simple:
integrate Eq. 25 over the momentum states i.e.

Γfi =

∫
2π

~
|Vfi|2 δ(Ef − Ei ± E) dp,

where Vfi ≡ 〈φf |Ĥ1|φi〉. First, we need to find the number of states with momentum in [p,p +
dp]. As usual, we discretize the space via a cubic lattice of side L. At large distances from the
perturbation, the wavefunction of the emitted or absorbed particle—of momentum p and energy
E—can be approximated by a normalized plane wave,

ξ(r, t) =
ei (p·r−Et)/~√

V
,

where V = L3 is the volume of the “box” in which the process occurs. Applying periodic boundary
conditions in the cube i.e.

ξ(x, y, z) = ξ(x+ L, y, z) = ξ(x, y + L, z) = ξ(x, y, z + L)

leads to
ei pxL/~ = ei pyL/~ = ei pzL/~ = 1.

Thus the momentum components of the emitted/absorbed particle satisfy

px = nx
2π~
L

py = ny
2π~
L

pz = nz
2π~
L
,

where ni ∈ Z. Reverting to the continuous-space representation, the momentum interval becomes

∆p = ∆n
(2π~)3

V
→ dp ≡ d3p = d3n

(2π~)3

V
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where n = (nx, ny, nz). In spherical coordinates, the momentum-space volume element is

d3p = p2dp dΩp (26)

where dΩp = sin θpdθpdφp is the infinitesimal p-space solid angle, indicating the direction of detection
(incidence) of the emitted (absorbed) particle. The infinitesimal transition rate, accompanied by
the emission/absorption of a particle with momentum ∈ [p,p + dp] and energy ∈ [E,E + dE] is
then

dΓfi =
2π

~
V d3p

(2π~)3
|Vfi|2 δ(Ef − Ei ± E)

=
2π

~
V

(2π~)3
p2
(
dp

dE

)
dE dΩp |Vfi|2 δ(Ef − Ei ± E)

=
2π

~
ρ(E) dΩp dE |Vfi|2 δ(Ef − Ei ± E). (27)

Note: Eq. 27 is a phase-space volume element since it involves the product of spatial and momentum
coordinates (d3r d3p→ V d3p). In the last line, the density of states

ρ(E)dΩp ≡
d3n

dE
=

V

(2π~)3
p2
(
dp

dE

)
dΩp

was introduced, denoting the number of states per unit energy. The updated transition rate is
obtained finally by integrating Eq. 27 over the desired energy range and solid angle. For example,
in the case of emission, one can choose between isotropic detection (i.e. particles emitted at all
angles) and directed detection (i.e. over the solid angle subtended by a particular detector).

Γfi =
2π

~

∫
det

dΩp

∫
dE ρ(E) |Vfi|2 δ(Ef − Ei ± E) (28)

=
2π

~

∫
det

dΩp

[
ρ(E) |Vfi|2

]
E=∓(Ef−Ei)

. (29)

The factor in the brackets, obtained from the property of the delta function
∫
f(x)δ(x − x0)dx =

f(x0), is evaluated at the exchange energy E specified by energy conservation. (Top signs: emission,
bottom signs: absorption.)

1 Application examples

1.1 Emission/absorption of a photon

If the particle emitted or absorbed is a photon, it is useful to use the second expression of d3p in
Eq. 26, as a function of the relativistic photon energy E = pc = ~kc = ~ω:

d3p = p2
(
dp

dE

)
dE dΩp =

p2

c
dE dΩp =

E2

c3
dE dΩp =

(~ω)2

c3
dE dΩp
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1.2 Emission/absorption of a free particle

A free particle has kinetic energy only

E =
p2

2m

hence
d3p = p2

m

p
dE dΩp = mpdE dΩp = m(2mE)1/2 dE dΩp

1.3 Emission/absorption of N free particles

For generality, here we consider the possible recoil of the quantum system that absorbs or emits
particles. If N particles are emitted (e.g. decays of large nuclei, multi-photon de-excitations etc.) or
absorbed (e.g. large atoms hit by photon or particle beams), the phase-space integration of Eq. 27
must now be done over all momenta while accounting for the conservation laws, yielding

Γfi =
2π

~

∫ ∫
...

∫
︸ ︷︷ ︸

N

N∏
k=1

ρ(Ek) |Vfi|2 dΩkdEk δ

(
Ef − Ei ±

N∑
k′=1

E ′k

)
δ

(
pf − pi −

N∑
k′=1

p′k

)

=
2π

~

∫ ∫
...

∫
︸ ︷︷ ︸

indep. momenta

N∏
k=1

ρ(Ek) |Vfi|2 dΩkdEk δ

(
Ef − Ei ±

N∑
k′=1

E ′k

)
. (30)

The first version of Eq. 30 shows the energy and momentum conservation explicitly while the second
version points out that the number of integrals is actually equal to the independent momenta. For
example, if an atom or nucleus decays into three particles, only two momenta are independent;
the third is automatically set by the conservation law. Nevertheless, the phase-space product∏

k ρ(Ek) |Vfi|2 dΩkdEk must be over all particles. If the quantum system undegoing the transition
is much heavier than the emitted/absorbed particles, its recoil is negligible i.e. pf ≈ pi and the
momentum conservation factor becomes irrelevant.
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Appendices

A Some properties of the Dirac Delta function

δ(x) = lim
ε→0

sin (x/ε)

π x
(A.1)

= lim
t→∞

sin2 (x t)

πx2t
(A.2)

= lim
ε→0

ε

π(x2 + ε2)
. (A.3)

δ(a x) =
δ(x)

|a|
(A.4)
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