
Transition Rates and Fermi’s Golden Rule–a Cookbook
©Andi Petculescu

*** MKS (SI) units ***

a0 ≈
~

mee2
=

~
mec α

α = e2/~c

1 Brief derivation

Consider a generic process by which a quantum system (e.g. an atom) absorbs and/or emits
a particle. Examples are scattering (such as the photoelectric, Compton, and Brillouin effects),
radiation absorption by atoms, spontaneous emission etc. For simplicity we assume a transition
involving the emission or absorption of a single particle (photon, electron, proton, neutron etc.).
The “barebones” transition rate Γfi from the initial state |φi〉 to the final state |φf〉, obtained as
the long-time limit of the transition probability per unit time, is

Γfi = lim
t→∞

dPf

dt
≈ 2π

~
|〈φf |Ĥ1|φi〉|2 δ(Ef − Ei ± E), (1)

where Ef(i) ≡ E0
f(i) are the unperturbed energies and ±E is the energy exchanged during the

transition (+E for emission, −E for absorption). The delta function expresses energy conservation.
The (somewhat vague) long-time premise means that the detection occurs well after the duration of
the perturbation—embodied by an “evolutionary time” ∆t—during which energy is not necessarily
conserved, having an uncertainty ∆E ∼ ~/∆t. Beside the fuzzyness of the “long-time” notion,
there is another, more systemic, difficulty with Eq. 1. First, the delta function signifies that the
transition occurs between states of sharply defined energies: Ef = Ei−E (emission) or Ef = Ei+E
(absorption). The finite resolution of the detectors, however, imposes a spread of the total final
energy in an interval [E,E + δE]. Furthermore, the energy of the particle(s) exchanged does not
specify the final state completely. We typically need to know in which direction and how fast the
particles move hence their momentum range [p,p+δp]. Therefore we have to update the transition
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rate to account for the final momentum and energy spreads. The solution is conceptually simple:
integrate Eq. 1 over the momentum states i.e.

Γfi =

∫
2π

~
|Vfi|2 δ(Ef − Ei ± E) dp,

where Vfi ≡ 〈φf |Ĥ1|φi〉. First, we need to find the number of states with momentum in [p,p +
dp]. As usual, we discretize the space via a cubic lattice of side L. At large distances from the
perturbation, the wavefunction of the emitted or absorbed particle—of momentum p and energy
E—can be approximated by a normalized plane wave,

ξ(r, t) =
ei (p·r−Et)/~
√
V

,

where V = L3 is the volume of the “box” in which the process occurs. Applying periodic boundary
conditions in the cube i.e.

ξ(x, y, z) = ξ(x+ L, y, z) = ξ(x, y + L, z) = ξ(x, y, z + L)

leads to
ei pxL/~ = ei pyL/~ = ei pzL/~ = 1.

Thus the momentum components of the emitted/absorbed particle satisfy

px = Nx
2π~
L

py = Ny
2π~
L

pz = Nz
2π~
L
,

where Ni ∈ Z. Reverting to the continuous-space representation, the momentum interval becomes

∆p = ∆N
(2π~)3

V
→ dp ≡ d3p = d3N

(2π~)3

V

where N = (Nx, Ny, Nz). In spherical coordinates, the momentum-space volume element is

d3p = p2dp dΩp (2)

where dΩp = sin θpdθpdφp is the infinitesimal p-space solid angle, indicating the direction of detection
(incidence) of the emitted (absorbed) particle. The infinitesimal transition rate, accompanied by
the emission/absorption of a particle with momentum ∈ [p,p + dp] and energy ∈ [E,E + dE] is
then

dΓfi =
2π

~
V d3p

(2π~)3
|Vfi|2 δ(Ef − Ei ± E)

=
2π

~
V

(2π~)3
p2
(
dp

dE

)
dE dΩp |Vfi|2 δ(Ef − Ei ± E)

=
2π

~
ρ(E) dΩp dE |Vfi|2 δ(Ef − Ei ± E). (3)
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Note: Eq. 3 is a phase-space volume element since it involves the product of spatial and momentum
coordinates (d3r d3p→ V d3p). In the last line, the density of states

ρ(E)dΩp ≡
d3N

dE
=

V

(2π~)3
p2
(
dp

dE

)
dΩp

was introduced, denoting the number of states per unit energy. The updated transition rate is
obtained finally by integrating Eq. 3 over the desired energy range and solid angle. For example, in
the case of emission, one can choose between isotropic detection (i.e. particles emitted at all angles)
and directed detection (i.e. over the solid angle subtended by a particular detector).

Γfi =
2π

~

∫
det

dΩp

∫
dE ρ(E) |Vfi|2 δ(Ef − Ei ± E) (4)

=
2π

~

∫
det

dΩp

[
ρ(E) |Vfi|2

]
E=∓(Ef−Ei)

. (5)

The factor in the brackets, obtained from the property of the delta function
∫
f(x)δ(x − x0)dx =

f(x0), is evaluated at the exchange energy E specified by energy conservation. (Top signs: emission,
bottom signs: absorption.)

2 Application examples

2.1 Emission/absorption of a photon

If the particle emitted or absorbed is a photon, it is useful to use the second expression of d3p in
Eq. 2, as a function of the relativistic photon energy E = pc = ~kc = ~ω:

d3p = p2
(
dp

dE

)
dE dΩp =

p2

c
dE dΩp =

E2

c3
dE dΩp =

(~ω)2

c3
dE dΩp

2.2 Emission/absorption of a free particle

A free particle has kinetic energy only

E =
p2

2m

hence
d3p = p2

m

p
dE dΩp = mpdE dΩp = m(2mE)1/2 dE dΩp

2.3 Emission/absorption of N free particles

For generality, here we consider the possible recoil of the quantum system that absorbs or emits
particles. If N particles are emitted (e.g. decays of large nuclei, multi-photon de-excitations etc.)
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or absorbed (e.g. large atoms hit by photon or particle beams), the phase-space integration of Eq. 3
must now be done over all momenta while accounting for the conservation laws, yielding

Γfi =
2π

~

∫ ∫
...

∫
︸ ︷︷ ︸

N

N∏
k=1

ρ(Ek) |Vfi|2 dΩkdEk δ

(
Ef − Ei ±

N∑
k′=1

E ′k

)
δ

(
pf − pi −

N∑
k′=1

p′k

)

=
2π

~

∫ ∫
...

∫
︸ ︷︷ ︸

indep. momenta

N∏
k=1

ρ(Ek) |Vfi|2 dΩkdEk δ

(
Ef − Ei ±

N∑
k′=1

E ′k

)
. (6)

The first version of Eq. 6 shows the energy and momentum conservation explicitly while the second
version points out that the number of integrals is actually equal to the independent momenta. For
example, if an atom or nucleus decays into three particles, only two momenta are independent;
the third is automatically set by the conservation law. Nevertheless, the phase-space product∏

k ρ(Ek) |Vfi|2 dΩkdEk must be over all particles. If the quantum system undegoing the transition
is much heavier than the emitted/absorbed particles, its recoil is negligible i.e. pf ≈ pi and the
momentum conservation factor becomes irrelevant.
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