Rotations and Angular Momentum

In three dimensions, the position and momentum eigenvalue problems read

$$
\begin{equation*}
\widehat{\boldsymbol{r}}|\boldsymbol{r}\rangle=\boldsymbol{r}|\boldsymbol{r}\rangle \quad \text { and } \quad \widehat{\boldsymbol{p}}|\boldsymbol{p}\rangle=\boldsymbol{p}|\boldsymbol{p}\rangle, \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
& |\boldsymbol{r}\rangle=\left|x_{1}, x_{2}, x_{3}\right\rangle, \boldsymbol{r}=\sum_{i=1}^{3} x_{i} \boldsymbol{e}_{i} \\
& |\boldsymbol{p}\rangle=\left|p_{1}, p_{2}, p_{3}\right\rangle, \boldsymbol{p}=\sum_{i=1}^{3} p_{i} \boldsymbol{e}_{i}
\end{aligned}
$$

1 Rotation operators

Rotations of a vector about the $x_{i}(i=1,2,3=x, y, z \ldots)$ axes by a finite angle are represented by the rotation matrices

$$
\widehat{\mathbb{R}}_{x}(\theta)=\left(\begin{array}{ccc}
1 & 0 & 0 \tag{2}\\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right), \quad \widehat{\mathbb{R}}_{y}(\theta)=\left(\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right), \quad \widehat{\mathbb{R}}_{z}(\theta)=\left(\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Here, I used the same angle θ for the three rotations for simplicity; in general, the angles should be different to cover all possibilities.

The generator of infinitesimal rotations

Consider rotations by an infinitesimal angle $\delta \theta$. Using Taylor expansions to the lowest order in $\delta \theta$ i.e. $\cos \delta \theta \approx 1-\frac{1}{2} \delta \theta^{2}$, $\sin \delta \theta \approx \delta \theta$, the rotation operators become

$$
\begin{align*}
& \widehat{\mathbb{R}}_{x}(\delta \theta) \approx\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1-\frac{1}{2} \delta \theta^{2} & -\delta \theta \\
0 & \delta \theta & 1-\frac{1}{2} \delta \theta^{2}
\end{array}\right), \tag{3}\\
& \widehat{\mathbb{R}}_{y}(\delta \theta) \approx\left(\begin{array}{ccc}
1-\frac{1}{2} \delta \theta^{2} & 0 & \delta \theta \\
0 & 1 & 0 \\
-\delta \theta & 0 & 1-\frac{1}{2} \delta \theta^{2}
\end{array}\right), \tag{4}\\
& \widehat{\mathbb{R}}_{z}(\delta \theta) \approx\left(\begin{array}{ccc}
1-\frac{1}{2} \delta \theta^{2} & -\delta \theta & 0 \\
\delta \theta & 1-\frac{1}{2} \delta \theta^{2} & 0 \\
0 & 0 & 1
\end{array}\right) . \tag{5}
\end{align*}
$$

Expressing the non-commutativity of successive rotations,

$$
\left[\widehat{\mathbb{R}}_{x}(\delta \theta), \widehat{\mathbb{R}}_{y}(\delta \theta)\right]=\left(\begin{array}{ccc}
0 & -\delta \theta^{2} & 0 \tag{6}\\
\delta \theta^{2} & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\widehat{\mathbb{R}}_{z}(\delta \theta)-\widehat{\mathbb{I}} \stackrel{!}{=}-i \frac{\delta \theta}{\hbar} \widehat{G}
$$

The last line of Eq. 6 introduces \widehat{G}, the generator of infinitesimal rotations about the z axis, through

$$
\widehat{\mathbb{R}}_{z}(\delta \theta)=\widehat{\mathbb{I}}-i \frac{\delta \theta}{\hbar} \widehat{G}
$$

The nature of \widehat{G}

Let's assume a quantum system (e.g. a molecule) is in state $|\psi\rangle$, and focus on rigid-body rotations about the z axis, given by $\widehat{\mathbb{R}}_{z}(\theta)$. Any three-dimensional vector operator $\widehat{\boldsymbol{V}}$ is transformed into $\widehat{\boldsymbol{V}}^{\prime}=\widehat{\mathbb{R}}_{z}(\theta) \widehat{\boldsymbol{V}}$. As a consequence, its expectation value in the given state $|\psi\rangle$ is transformed via $\left\langle\boldsymbol{V}^{\prime}\right\rangle=\widehat{\mathbb{R}}_{z}(\theta)\langle\boldsymbol{V}\rangle$, where $\left\langle\boldsymbol{V}^{\prime}\right\rangle=\langle\psi| \widehat{\boldsymbol{V}}^{\prime}|\psi\rangle$ and $\langle\boldsymbol{V}\rangle=\langle\psi| \widehat{\boldsymbol{V}}|\psi\rangle$. In particular, for the position vector operator $|\boldsymbol{r}\rangle$ one has

$$
|\boldsymbol{r}\rangle^{\prime}=\widehat{\mathbb{R}}_{z}(\theta) \widehat{\boldsymbol{r}}
$$

We then impose - postulate - forward (positive) and reverse (negative) rotations about the z axis as

$$
\begin{align*}
\left|\boldsymbol{r}_{+}\right\rangle^{\prime} & \equiv \widehat{\mathbb{R}}_{z}(\theta) \widehat{\boldsymbol{r}} \stackrel{!}{=}|x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z\rangle \tag{7}\\
\left|\boldsymbol{r}_{-}\right\rangle^{\prime} & \equiv \widehat{\mathbb{R}}_{z}^{\dagger}(\theta) \widehat{\boldsymbol{r}} \stackrel{!}{=}|x \cos \theta+y \sin \theta,-x \sin \theta+y \cos \theta, z\rangle=\widehat{\mathbb{R}}_{z}(-\theta) \tag{8}
\end{align*}
$$

Now, we can construct \widehat{G} from infinitesimal rotations. First, define the corresponding forward and reverse rotations by keeping up to $\mathcal{O}(\delta \theta)$:

$$
\begin{align*}
& \widehat{\mathbb{R}}_{z}(\delta \theta)|\boldsymbol{r}\rangle \stackrel{!}{=}|x-y \delta \theta, x \delta \theta+y, z\rangle \tag{9}\\
& \widehat{\mathbb{R}}_{z}^{\dagger}(\delta \theta)|\boldsymbol{r}\rangle \stackrel{!}{=}|x+y \delta \theta,-x \delta \theta+y, z\rangle=\widehat{\mathbb{R}}_{z}(-\delta \theta) \tag{10}
\end{align*}
$$

Next, consider the effect of rotations on a wavefunction, through $\psi(\boldsymbol{r}) \rightarrow \psi^{\prime}(\boldsymbol{r})=\langle\boldsymbol{r}| \widehat{\mathbb{R}}_{z}(\delta \theta)|\psi\rangle$.

$$
\begin{equation*}
\langle\boldsymbol{r}| \widehat{\mathbb{R}}_{z}(\delta \theta)|\psi\rangle=\langle x+y \delta \theta,-x \delta \theta+y, z \mid \psi\rangle=\psi(x+y \delta \theta,-x \delta \theta+y, z) \tag{11}
\end{equation*}
$$

which becomes

$$
\begin{aligned}
& \langle\boldsymbol{r}| \widehat{\mathbb{I}}-i \frac{\delta \theta}{\hbar} \widehat{G}|\psi\rangle=\psi(\boldsymbol{r})+\left(\frac{\partial \psi}{\partial x}\right) y \delta \theta-\left(\frac{\partial \psi}{\partial y}\right) x \delta \theta+\mathcal{O}\left(\delta \theta^{2}\right) \\
& \psi(\boldsymbol{r})-i \frac{\delta \theta}{\hbar}\langle\boldsymbol{r}| \widehat{G}|\psi\rangle=\psi(\boldsymbol{r})+\left[x\left(-i \hbar \partial_{y}\right)+y\left(i \hbar \partial_{x}\right)\right] \psi(\boldsymbol{r}) .
\end{aligned}
$$

The net result is

$$
\begin{equation*}
\langle\boldsymbol{r}| \widehat{G}|\psi\rangle=\langle\boldsymbol{r}| \widehat{x} \widehat{p}_{y}-\widehat{y} \widehat{p}_{x}|\psi\rangle \equiv\langle\boldsymbol{r}| \widehat{L}_{z}|\psi\rangle . \tag{12}
\end{equation*}
$$

Eq. 12 concludes that the generator of rotations about the z axis is the z-component of the orbital angular momentum i.e. $\widehat{G}=\widehat{L}_{z}$; this translates to

$$
\begin{equation*}
\widehat{\mathbb{R}}_{z}(\delta \theta)=\widehat{\mathbb{I}}-i \frac{\delta \theta}{\hbar} \widehat{L}_{z} . \tag{13}
\end{equation*}
$$

Finite-angle rotations

A rotation by a finite angle θ is obtained as an infinite sequence of successive infinitesimal rotations by angle $\delta \theta=\lim _{N \rightarrow \infty}(\theta / N)$. Using Eq.13,

$$
\begin{equation*}
\widehat{\mathbb{R}}_{z}(\theta)=\lim _{N \rightarrow \infty}\left[\widehat{\mathbb{R}}_{z}(\delta \theta)\right]^{N}=\lim _{N \rightarrow \infty}\left[\widehat{\mathbb{I}}-i\left(\frac{\theta}{N}\right) \frac{\widehat{L}_{z}}{\hbar}\right]^{N}=\exp \left(-i \frac{\theta}{\hbar} \widehat{L}_{z}\right) \tag{14}
\end{equation*}
$$

The negative-angle action imposed on a position eigenket through Eqs. 8 and 10 ensures that the rotation operator $\widehat{\mathbb{R}}_{z}$ is unitary i.e. $\widehat{\mathbb{R}}_{z}^{\dagger} \widehat{\mathbb{R}}_{z}=\widehat{\mathbb{I}}=\widehat{\mathbb{R}}_{z} \widehat{\mathbb{R}}_{z}^{\dagger}$. This, in turn, makes the generator, \widehat{L}_{z}, Hermitian. Equations 13 and 14 apply equally to rotations about the x and y axes; the corresponding generators are the respective operators \widehat{L}_{x} and \widehat{L}_{y}, also Hermitian. The three components of the vector angular momentum operator $\widehat{\boldsymbol{L}}$ can be expressed in condensed form using the Levi-Civita tensor,

$$
\widehat{L}_{k}=\sum_{i, j=1}^{3} \epsilon_{i j k} \widehat{x}_{i} \widehat{p}_{j}
$$

2 Important commutators

$$
\begin{gather*}
{\left[\widehat{x}_{i}, \widehat{p}_{j}\right]=i \hbar \delta_{i j}, \quad\left[\widehat{x}_{i}, \widehat{x}_{j}\right]=0=\left[\widehat{p}_{i}, \widehat{p}_{j}\right],} \tag{15}\\
{\left[\widehat{L}_{i}, \widehat{L}_{j}\right]=i \hbar \sum_{i=1}^{3} \epsilon_{i j k} \widehat{L}_{k}} \tag{16}
\end{gather*}
$$

