Stationary State Perturbation Theory

(C)Andi Petculescu

Consider the perturbed Hamiltonian

$$\widehat{H} = \widehat{H}_0 + \lambda \widehat{H}_1.$$

 \widehat{H}_0 is the unperturbed Hamiltonian whose (complete and orthonormal) eigenstates $|n^{(0)}\rangle$ and eigenvalues $E_n^{(0)}$ are known, and \widehat{H}_1 is a weak perturbation. λ is a perturbative parameter which slowly turns the perturbation on, with values from 0 ($\widehat{H} = \widehat{H}_0$) to 1 ($\widehat{H} = \widehat{H}_0 + \widehat{H}_1$). Note: sometimes, λ can be "built into" the perturbing Hamiltonian.

1 NON-DEGENERATE CASE

• *Known*: the EVP of unperturbed Hamiltonian,

$$\widehat{H}_0|n^{(0)}\rangle = E_n^{(0)}|n^{(0)}\rangle$$
 (1)

Note: the weakness of \widehat{H}_1 is such that $|\lambda\langle k^{(0)}|\widehat{H}_1|n^{(0)}\rangle| \ll |E_n^{(0)} - E_k^{(0)}|$.

• Goal: the perturbed eigenkets and eigenvalues

$$\widehat{H}|\psi_n\rangle = E_n|\psi_n\rangle \tag{2}$$

Note that, as the perturbation is turned off $(\lambda \to 0)$, the EVP is reduced to that of the unperturbed system i.e. $|\psi_n\rangle \to |n^{(0)}\rangle$ and $E_n \to E_n^{(0)}$.

• Seek:

$$|\psi_n\rangle \stackrel{!}{=} |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \lambda^2 |n^{(2)}\rangle + \dots = \sum_{p=0}^{\infty} \lambda^p |n^{(p)}\rangle$$
 (3)

$$E_n \stackrel{!}{=} E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \dots = \sum_{p=0}^{\infty} \lambda^p E_n^{(p)}$$
 (4)

Note: the perturbed state $|\psi_n\rangle$ cannot be rigorously normalized, since it is an infinite series. An approximate normalization condition $(\langle \psi_n | \psi_n \rangle \stackrel{!}{\approx} 1)$ can be imposed up to the desired correction order. For example, if the 1st-order correction is sufficient, terms $\mathcal{O}(\lambda^2)$ and higher are neglected; for the 2nd-order, terms $\mathcal{O}(\lambda^3)$ and higher are neglected a.s.o.

The solutions are found by expressing $\widehat{H}|\psi_n\rangle = E_n|\psi_n\rangle$ in powers of λ using Eqs. 3 and 4 i.e.

$$\widehat{H}|\psi_n\rangle = (\widehat{H}_0 + \lambda \widehat{H}_1) \sum_{p=0}^{\infty} \lambda^p |n^{(p)}\rangle$$

$$\stackrel{!}{=} \sum_{q=0}^{\infty} \lambda^q E_n^{(q)} \sum_{r=0}^{\infty} \lambda^r |n^{(r)}\rangle = \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \lambda^{q+r} E_n^{(q)} |n^{(r)}\rangle$$
(5)

Identify the coefficients of the different powers of λ on the LHS and RHS:

$$\lambda^{0}: \qquad \widehat{H}_{0}|n^{(0)}\rangle = E_{n}^{(0)}|n^{(0)}\rangle
\lambda^{1}: \qquad \widehat{H}_{0}|n^{(1)}\rangle + \widehat{H}_{1}|n^{(0)}\rangle = E_{n}^{(0)}|n^{(1)}\rangle + E_{n}^{(1)}|n^{(0)}\rangle
\lambda^{2}: \qquad \widehat{H}_{0}|n^{(2)}\rangle + \widehat{H}_{1}|n^{(1)}\rangle = E_{n}^{(0)}|n^{(2)}\rangle + E_{n}^{(1)}|n^{(1)}\rangle + E_{n}^{(2)}|n^{(0)}\rangle
...$$

$$\lambda^{j}: \qquad \widehat{H}_{0}|n^{(j)}\rangle + \widehat{H}_{1}|n^{(j-1)}\rangle = \sum_{p=0}^{j} E_{n}^{(p)}|n^{(j-p)}\rangle. \tag{6}$$

The corrections to the energy eigenvalues are obtained by projecting the EVP (Equation 5) onto the unperturbed state $|n^{(0)}\rangle$ and using Eqs. 6 to identify the powers of λ :

$$\langle n^{(0)}|\widehat{H}|\psi_n\rangle = \sum_{p=0}^{\infty} \left(\lambda^p \langle n^{(0)}|\widehat{H}_0|n^{(p)}\rangle + \lambda^{p+1} \langle n^{(0)}|\widehat{H}_1|n^{(p)}\rangle\right)$$

$$= \sum_{q=0}^{\infty} \sum_{r=0}^{\infty} \lambda^{q+r} E_n^{(q)} \langle n^{(0)}|n^{(r)}\rangle.$$
(7)

The first-order corrections

For the energy correction, focus on the λ^1 -terms on either side of Eq. 7:

$$\langle n^{(0)} | \hat{H}_0 | n^{(1)} \rangle + \langle n^{(0)} | \hat{H}_1 | n^{(0)} \rangle = E_n^{(0)} \langle n^{(0)} | n^{(1)} \rangle + E_n^{(1)} \underbrace{\langle n^{(0)} | n^{(0)} \rangle}_{1}$$

$$\underline{E_n^{(0)} \langle n^{(0)} | n^{(1)} \rangle} + \langle n^{(0)} | \hat{H}_1 | n^{(0)} \rangle = \underline{E_n^{(0)} \langle n^{(0)} | n^{(1)} \rangle} + E_n^{(1)}, \tag{8}$$

which leads to

$$E_n^{(1)} = \langle n^{(0)} | \hat{H}_1 | n^{(0)} \rangle \tag{9}$$

Eq 9 shows that the 1-st order correction to the n-th energy eigenvalue is essentially the diagonal element of the peturbation Hamiltonian, in the basis formed by the unperturbed states ("unperturbed basis"), namely $\{|n^{(0)}\rangle\}$. Thus, to first order, the perturbed n-th energy level is

$$E_n = E_n^{(0)} + \lambda \langle n^{(0)} | \hat{H}_1 | n^{(0)} \rangle + \mathcal{O}(\lambda^2).$$

To obtain the 1-st order correction to the eigenstate, $|n^{(1)}\rangle$, start by expressing it in the unperturbed basis:

$$|n^{(1)}\rangle = \sum_{k} |k^{(0)}\rangle\langle k^{(0)}|n^{(1)}\rangle$$

$$= |n^{(0)}\rangle\underbrace{\langle n^{(0)}|n^{(1)}\rangle}_{2} + \sum_{k\neq n} |k^{(0)}\rangle\underbrace{\langle k^{(0)}|n^{(1)}\rangle}_{2}$$
(10)

At this point, we have to evaluate $\langle n^{(0)}|n^{(1)}\rangle$ and $\langle k^{(0)}|n^{(1)}\rangle$ to first order in λ . For $\langle n^{(0)}|n^{(1)}\rangle$, we impose that the perturbed state $|\psi_n\rangle$ be normalized to unity i.e.

$$1 \stackrel{!}{=} \langle \psi_n | \psi_n \rangle = \sum_{p=0}^{\infty} \lambda^p \langle n^{(p)} | \sum_{r=0}^{\infty} \lambda^r | n^{(r)} \rangle = \sum_{p=0}^{\infty} \sum_{r=0}^{\infty} \lambda^{p+r} \langle n^{(p)} | n^{(r)} \rangle$$
$$= \underbrace{\langle n^{(0)} | n^{(0)} \rangle}_{1} + \lambda \left(\langle n^{(0)} | n^{(1)} \rangle + \langle n^{(1)} | n^{(0)} \rangle \right) + \mathcal{O}(\lambda^2)$$
(11)

The term in parentheses in Eq. 11 can thus be set to zero; furthermore, since it is the sum of $\langle n^{(0)}|n^{(1)}\rangle$ and its complex conjugate, $\langle n^{(0)}|n^{(1)}\rangle \stackrel{!}{\approx} 0$. For $\langle k^{(0)}|n^{(1)}\rangle$, project the λ^1 -term of Eqs. 6 onto the unperturbed state $|k^{(0)}\rangle$:

$$\langle k^{(0)} | \widehat{H}_0 | n^{(1)} \rangle + \langle k^{(0)} | \widehat{H}_1 | n^{(0)} \rangle = E_n^{(0)} \langle k^{(0)} | n^{(1)} \rangle + E_n^{(1)} \underbrace{\langle k^{(0)} | n^{(0)} \rangle}_{\delta_{kn}}$$

Using the EVP for \widehat{H}_0 and Eq. 9, one obtains

$$E_k^0 \langle k^{(0)} | n^{(1)} \rangle + \langle k^{(0)} | \widehat{H}_1 | n^{(0)} \rangle = E_n^{(0)} \langle k^{(0)} | n^{(1)} \rangle + \langle n^{(0)} | \widehat{H}_1 | n^{(0)} \rangle \delta_{kn}$$

$$(E_n^0 - E_k^0) \langle k^{(0)} | n^{(1)} \rangle = \langle k^{(0)} | \widehat{H}_1 | n^{(0)} \rangle - \langle n^{(0)} | \widehat{H}_1 | n^{(0)} \rangle \delta_{kn}$$
(12)

If k = n, Eq. 12 is trivial; for $k \neq n$, it becomes

$$\langle k^{(0)}|n^{(1)}\rangle = \frac{\langle k^{(0)}|\widehat{H}_1|n^{(0)}\rangle}{E_n^0 - E_k^0}.$$
(13)

Hence, to first order of λ , the *n*-th perturbed eigenstate is

$$|\psi_n\rangle = |n^{(0)}\rangle + \lambda \sum_{k \neq n} |k^{(0)}\rangle \frac{\langle k^{(0)}|\hat{H}_1|n^{(0)}\rangle}{E_n^0 - E_k^0} + \mathcal{O}(\lambda^2),$$
(14)

where the sum contains the off-diagonal matrix elements of the perturbation Hamiltonian, $(H_1)_{kn}^0 \equiv \langle k^{(0)}|\widehat{H}_1|n^{(0)}\rangle$, in the unperturbed basis.

The second-order correction to the energy

For the energy correction, consider the λ^2 -terms on both sides of Eq. 7:

$$\langle n^{(0)}|\hat{H}_{0}|n^{(2)}\rangle + \langle n^{(0)}|\hat{H}_{1}|n^{(1)}\rangle = E_{n}^{(0)}\langle n^{(0)}|n^{(2)}\rangle + E_{n}^{(1)}\langle n^{(0)}|n^{(1)}\rangle + E_{n}^{(2)}\underbrace{\langle n^{(0)}|n^{(0)}\rangle}_{1}$$

$$\underline{E_{n}^{(0)}\langle n^{(0)}|n^{(2)}\rangle} + \langle n^{(0)}|\hat{H}_{1}|n^{(1)}\rangle = \underline{E_{n}^{(0)}\langle n^{(0)}|n^{(2)}\rangle} + E_{n}^{(2)}, \tag{15}$$

which leads to

$$\begin{split} E_n^{(2)} &= \langle n^{(0)} | \widehat{H}_1 | n^{(1)} \rangle \\ &= \langle n^{(0)} | \widehat{H}_1 \widehat{\mathbf{1}}^{(0)} | n^{(1)} \rangle = \sum_{k=0}^{\infty} \langle n^{(0)} | \widehat{H}_1 | k^{(0)} \rangle \langle k^{(0)} | n^{(1)} \rangle \\ &= \langle n^{(0)} | \widehat{H}_1 | n^{(0)} \rangle \underbrace{\langle n^{(0)} | n^{(1)} \rangle}_{\stackrel{!}{\approx} 0} + \sum_{k \neq n} \langle n^{(0)} | \widehat{H}_1 | k^{(0)} \rangle \underbrace{\langle k^{(0)} | n^{(1)} \rangle}_{\text{use Eq. 13}} \\ &\approx \sum_{k \neq n} \langle n^{(0)} | \widehat{H}_1 | k^{(0)} \rangle \underbrace{\langle k^{(0)} | \widehat{H}_1 | n^{(0)} \rangle}_{E_n^0 - E_k^0}. \end{split}$$

Hence

$$E_n^{(2)} = \sum_{k \to n} \frac{|\langle k^{(0)} | \hat{H}_1 | n^{(0)} \rangle|^2}{E_n^0 - E_k^0}.$$
 (16)

The perturbed n-th energy level is thus, to second order,

$$E_n = E_n^{(0)} + \lambda \langle n^{(0)} | \widehat{H}_1 | n^{(0)} \rangle + \lambda^2 \sum_{k \neq n} \frac{|\langle k^{(0)} | \widehat{H}_1 | n^{(0)} \rangle|^2}{E_n^0 - E_k^0} + \mathcal{O}(\lambda^3).$$

2 DEGENERATE CASE

- \widehat{H}_0 is the unperturbed operator, whose eigenvalues are degenerate (see below).
- \widehat{H}_1 is a small perturbation.

As usual, we use the bookkeeping parameter $0 \le \lambda \le 1$, such that $\widehat{H} = \widehat{H}_0 + \lambda \widehat{H}_1$. In other words, as $\lambda = 0 \to 1$, $\widehat{H}_0 \to \widehat{H}_0 + \widehat{H}_1$

• **Known**: $\widehat{H}_0|n_{\alpha}^{(0)}\rangle = E_n^{(0)}|n_{\alpha}^{(0)}\rangle \ (\alpha = 1...N, \ n = 1, 2, ...)$

The α subscript denotes the degeneracy of the $n^{\rm th}$ unperturbed state. We assume the $n^{\rm th}$ level is N-fold degenerate i.e. there are N states with energy $E_n^{(0)}$.

- **Goal**: $\widehat{H}|\Psi_{n_{\alpha}}\rangle \stackrel{!}{=} E_n|\Psi_{n_{\alpha}}\rangle$, with $\langle \Psi_{n_{\alpha}}|\Psi_{n_{\alpha}}\rangle \stackrel{!}{\approx} 1$, to the desired perturbation order ($\alpha = 1...N$, n = 1, 2, ...).
- Seek the appropriate linear combination of the unperturbed (j = 0) degenerate $(\alpha = 1...N)$ states and perturbed $(j \ge 1)$ non-degenerate states:

$$|\Psi_{n_{\alpha}}\rangle \stackrel{!}{=} \sum_{\beta=1}^{N} c_{\alpha\beta} |n_{\alpha\beta}^{(0)}\rangle + \sum_{j=1}^{\infty} \lambda^{j} |n_{\alpha}^{(j)}\rangle$$
 (17)

$$E_n \stackrel{!}{=} E_n^{(0)} + \sum_{j=1}^{\infty} \lambda^j E_n^{(j)}$$
 (18)

In Eq. 17 above, $\sum_{\beta=1}^{N} c_{\alpha\beta} |n_{\alpha\beta}^{(0)}\rangle \equiv |n_{\alpha}^{(0)}\rangle$ is the <u>unique</u> linear combination that diagonalizes \widehat{H}

in the subspace formed by the degenerate eigenstates of \hat{H}_0 .

Notation The superscripts in parentheses (e.g. $n^{(j)}$, $E_n^{(j)}$) denote the order of the perturbation; superscripts without parentheses (e.g. λ^j) denote exponents. Additionally, Greek subscripts represent the degenerate states ($\alpha, \beta = 1...N$)

The needed EVP for the perturbed Hamiltonian can be written as

$$(\widehat{H}_{0} + \lambda \widehat{H}_{1}) \left(\sum_{\beta=1}^{N} c_{\alpha\beta} |n_{\alpha\beta}^{(0)}\rangle + \sum_{j=1}^{\infty} \lambda^{j} |n_{\alpha}^{(j)}\rangle \right)$$

$$\stackrel{!}{=} \left(E_{n}^{(0)} + \sum_{j=1}^{\infty} \lambda^{j} E_{n}^{(j)} \right) \left(\sum_{\beta=1}^{N} c_{\alpha\beta} |n_{\alpha\beta}^{(0)}\rangle + \sum_{j=1}^{\infty} \lambda^{j} |n_{\alpha}^{(j)}\rangle \right)$$

$$(19)$$

Expand product and identify coefficients of λ^{j} (j = 1, 2, ...):

$$\lambda^0: \widehat{H}_0|n_\alpha^{(0)}\rangle = E_n^{(0)}|n_\alpha^{(0)}\rangle$$

$$\lambda^{1}: \ \widehat{H}_{0}|n_{\alpha}^{(1)}\rangle + \widehat{H}_{1}\sum_{\beta=1}^{N}c_{\alpha\beta}|n_{\alpha\beta}^{(0)}\rangle = E_{n}^{(0)}|n_{\alpha}^{(1)}\rangle + E_{n}^{(1)}\sum_{\beta=1}^{N}c_{\alpha\beta}|n_{\alpha\beta}^{(0)}\rangle$$

$$\lambda^{2}: \widehat{H}_{0}|n_{\alpha}^{(2)}\rangle + \widehat{H}_{1}|n_{\alpha}^{(1)}\rangle = E_{n}^{(0)}|n_{\alpha}^{(2)}\rangle + E_{n}^{(1)}|n_{\alpha}^{(1)}\rangle + E_{n}^{(2)}\sum_{\beta=1}^{N}c_{\alpha\beta}|n_{\alpha\beta}^{(0)}\rangle \dots$$

$$\lambda^{j}: \ \widehat{H}_{0}|n_{\alpha}^{(j)}\rangle + \widehat{H}_{1}|n_{\alpha}^{(j-1)}\rangle = \sum_{l=0}^{j-1} E_{n}^{(l)}|n_{\alpha}^{(j-l)}\rangle + E_{n}^{(j)}\sum_{\beta=1}^{N} c_{\alpha\beta}|n_{\alpha\beta}^{(0)}\rangle.$$

(Note: for j = 1, the zeroth-order "perturbation" is actually $\sum_{\beta=1}^{N} c_{\alpha\beta} |n_{\alpha\beta}^{(0)}\rangle$.)

Now project the λ^j term on the $\langle n_{\gamma}^0|$ degenerate state, using $\langle n_{\gamma}^{(0)}|n_{\alpha}^{(0)}\rangle=\delta_{\gamma\alpha}$. After some algebra:

$$\langle n_{\gamma}^{(0)} | \widehat{H}_0 | n_{\alpha}^{(j)} \rangle + \langle n_{\gamma}^{(0)} | \widehat{H}_1 | n_{\alpha}^{(j-1)} \rangle = \sum_{l=1}^{j-1} E_n^{(l)} \langle n_{\gamma}^{(0)} | n_{\alpha}^{(j-l)} \rangle + E_n^{(j)} c_{\alpha\gamma}$$
(20)

The first-order energy correction $E_n^{(1)}$ is obtained from Eq. 20 as follows:

$$\langle n_{\gamma}^{(0)} | \widehat{H}_{1} \sum_{\beta=1}^{N} c_{\alpha\beta} | n_{\alpha\beta}^{(0)} \rangle = E_{n}^{(1)} c_{\alpha\gamma}$$

$$\sum_{\beta=1}^{N} c_{\alpha\beta} \langle n_{\gamma}^{(0)} | \widehat{H}_{1} | n_{\alpha\beta}^{(0)} \rangle = E_{n}^{(1)} \sum_{\beta=1}^{N} c_{\alpha\beta} \delta_{\beta\gamma}$$

$$\sum_{\beta=1}^{N} c_{\alpha\beta} (\langle n_{\gamma}^{(0)} | \widehat{H}_{1} | n_{\alpha\beta}^{(0)} \rangle - E_{n}^{(1)} \delta_{\beta\gamma}) = 0$$

$$\rightarrow (H_{1})_{\gamma\beta} \equiv \langle n_{\gamma}^{(0)} | \widehat{H}_{1} | n_{\beta}^{(0)} \rangle = E_{n}^{(1)} \delta_{\gamma\beta} \qquad (\gamma, \beta = 1...N)$$

$$(21)$$

Equation 21 means that the first-order energy corrections are obtained by diagonalizing the perturbation \hat{H}_1 in the degenerate subspace of the unperturbed Hamiltonian \hat{H}_0 .