The Fine Structure of Hydrogenic Atoms

©Andi Petculescu
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1 Relativistic kinetic energy correction

Consider the following central-potential Hamiltonian, accounting for a relativistic electron and a
non-relativistic proton:
H=K.+K,+V(F)
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where .
V(7)) = —ko Ze*r—1

is the Coulomb potential. (Note the operator form of 7~!.) Equation 1 can be written in terms of
an unperturbed Hamiltonian H, and a kinetic-energy perturbation HF" as follows:

H = Hy+ HF", (2)
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The last expression on the right of Eq. 3 is the center-of-mass representation, with p the total
momentum and g the reduced mass. (Because of the electron’s smaller mass, its kinetic energy

may be assumed to dominate i.e. p? /2~ pAg /2m..) The EVPs for the unperturbed and perturbed
Hamiltonians are, respectively,

H, Inim) = EY [nlm)  « known

i [Vnim) = En|¥nim) 4 unknown.

For simplicity, [nlm°) = [nlm). The unperturbed energies can be treated non-relativistically since
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The perturbed eigenkets and eigenvalues are sought as power series in a perturbation parameter
A €[0,1]:

i) = [ndm) + > N [nlm?) (5)
j=1
E,=EQ+Y NKY. (6)
j=1

The sum on the RHS of Eq. 6 involves the various orders of the relativistic kinetic energy shifts. The
perturbation HF™ is rotationally invariant because [H}™, L] = 0. Therefore, it is already diagonal
in the (degenerate) subspace of the |nlm) states. Because of this, the energy shifts can be found by
non-degenerate perturbation theory. The first-order correction to the n-th energy level is
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The position-operator expectation values of Eq. 7 are
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The first-order energy shift induced by relativistic corrections to the kinetic energy (Eq. 7) becomes
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2 Spin-orbit coupling

In its rest frame, the electron experiences the magnetic field generated by the nucleus of charge
+Ze moving with velocity —v. Conceptually, one can estimate this magnetic field by a cavalier
version of the Biot-Savart Law,
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where L is the orbital angular momentum of the electron. A more physically sound derivation
considers the electron moving with velocity v in the electric field of the nucleus, E = —V¢(r):

vxE:_vx(—ng)_vxr(@): —L <@> Ze L
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where the electric potential due the nucleus is ¢(r) = kg Ze/r. The interaction of this magnetic
field with the electron’s intrinsic magnetic moment g, = —(e/m.)S is modeled via the spin-orbit
Hamiltonian A
Ze* S-L
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where ¢ = (ppeo)~"/? is the speed of light in vacuum; the factor 2 in the denominator of Eq. 9
accounts for Thomas precession, a relativistic effect.

We can now use degenerate perturbation theory to obtain the energy shifts arising from the
spin-orbit effects on hydrogenic atoms. The perturbed Hamiltonian that is to be diagonalized is
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The eigenstates of H, must now include the electronic spin, i.e. [nlm)® |% , j:%>; the unperturbed

wave functions are now wnlm(r,ﬁ,@\% , i%> We can diagonalize H the straightforward—albeit

laborious—way. Alternatively, we can look for a set commuting observables in which both PAIO and
Hpg are diagonal. (This is equivalent to finding the right decomposition of the unperturbed states

in their degenerate subspace.) Such a set is easy to spot: {L2,52, J% J.}, whose simultaneous

cigenkets are |nljm;) (we omit the spin states |3 ,=+3) since they are independent of the other

quantum numbers). Here, J = L + S is the total angular momentum. The spin-orbit coupling in

Hjg is then

gi:%gva_ga

whose matrix elements in the {|nljm;)} basis are
2

(5 Dy, = [J+D-10+D -5,

The total angular momentum number takes the values j = [ £ 1/2, for fixed . Therefore,

h? [, for j=1+1/2
<S'L>nljm':_ X .
2 —l—1, forj=1-1/2.

The remaining matrix elements of Hys to be calculated are those of r—3. These are
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Consequently, in the {|nljm;)} basis, the first-order correction matrix elements are
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X
n3l(l+1)(1+1/2) -1, forj=101-1/2.

3 Other contributions: the Darwin and Lamb shifts

The “Darwin term” affects the [ = 0 (5) states. It is related to the effect of the rapidly oscillating
S-state wavefunction that alters the electric potential at the nucleus. Its expression is
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where

3/2
Unool0) = Ruo(0) Yoo (0, 6) = 2 (niao) %

The Lamb shift is a minute energy correction arising from the self-interaction of the electron
with its own electromagmetic field. It results in raising the 25, /2 state above the ’p /2 state by a
tiny amount. Its order of magnitude is Epamp ~ mec?(Za)* aloga.

Thus, the fine structure of hydrogenic atoms is, to first order,

En = E7(10) + K(ll) + E](Jl,s)' + EDarwin + ELarnb
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valid for both [ = j+1/2 and [ = 0.



