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*** MKS (SI) units: let k0 ≡ 1/4πε0 ***

a0 ≈
~

mee2
=

~
mec α

α = e2/~c

1 Relativistic kinetic energy correction

Consider the following central-potential Hamiltonian, accounting for a relativistic electron and a
non-relativistic proton:

Ĥ = K̂e + K̂p + V ( r̂ )

=

√
p̂2e c

2 + (mec2)2 −mec
2 +

p̂2p
2mp

+ V ( r̂ )

= mec
2

√1 +

(
p̂e
mec

)2

− 1

+
p̂2p

2mp

+ V ( r̂ )

≈

[
p̂2e

2me

− p̂4e
8m3

ec
2

+O(3)

]
+

p̂2p
2mp

+ V ( r̂ ) (1)

where
V ( r̂ ) = −k0 Ze2 r̂−1

is the Coulomb potential. (Note the operator form of r−1.) Equation 1 can be written in terms of

an unperturbed Hamiltonian Ĥ0 and a kinetic-energy perturbation Ĥkin
1 as follows:

Ĥ = Ĥ0 + Ĥkin
1 , (2)
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with

Ĥ0 ≡
p̂2e

2me

+
p̂2p

2mp

+ V ( r̂ ) =
p̂2

2µ
+ V ( r̂ ) (3)

Ĥkin
1 ≡ − p̂4e

8m3
ec

2
. (4)

The last expression on the right of Eq. 3 is the center-of-mass representation, with p̂ the total
momentum and µ the reduced mass. (Because of the electron’s smaller mass, its kinetic energy

may be assumed to dominate i.e. p̂2/2µ ≈ p̂2e/2me.) The EVPs for the unperturbed and perturbed
Hamiltonians are, respectively,

Ĥ0 |nlm〉 = E(0)
n |nlm〉 ← known

Ĥ |ψnlm〉 = En |ψnlm〉 ← unknown.

For simplicity, |nlm0〉 ≡ |nlm〉. The unperturbed energies can be treated non-relativistically since

|E(0)
n | =

∣∣∣〈nlm|Ĥ0|nlm〉
∣∣∣ =

∣∣∣∣∣〈nlm| p̂22µ
|nlm〉

∣∣∣∣∣ ≈ mec
2Z2α2

2n2
� mec

2.

The perturbed eigenkets and eigenvalues are sought as power series in a perturbation parameter
λ ∈ [0, 1]:

|ψnlm〉 = |nlm〉+
∞∑
j=1

λj |nlmj〉 (5)

En = E(0)
n +

∞∑
j=1

λj K(j)
n . (6)

The sum on the RHS of Eq. 6 involves the various orders of the relativistic kinetic energy shifts. The
perturbation Ĥkin

1 is rotationally invariant because [Ĥkin
1 , L̂] = 0. Therefore, it is already diagonal

in the (degenerate) subspace of the |nlm〉 states. Because of this, the energy shifts can be found by
non-degenerate perturbation theory. The first-order correction to the n-th energy level is

K(1)
n = −〈nlm| p̂4e

8m3
ec

2
|nlm〉

= − 1

2mec2
〈nlm|

(
p̂2e

2me

)2

|nlm〉

≈ − 1

2mec2
〈nlm|

(
Ĥ0 + k0 Ze

2 r̂−1
)2
|nlm〉

= − 1

2mec2
[
(E(0)

n )2 + 2Ze2E(0)
n

〈
r−1
〉
nlm

+ Z2e4
〈
r−2
〉
nlm

]
. (7)
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The position-operator expectation values of Eq. 7 are

〈
1

r

〉
nlm

:= 〈nlm| r̂−1 |nlm〉 =
Z

a0n2
⇒ Ze2

〈
1

r

〉
nlm

= −2E(0)
n ,

〈
1

r2

〉
nlm

:= 〈nlm| r̂−2 |nlm〉 =
Z2

a0n3(l + 1/2)
⇒ Z2e4

〈
1

r2

〉
nlm

=
4n(E

(0)
n )2

l + 1/2
.

The first-order energy shift induced by relativistic corrections to the kinetic energy (Eq. 7) becomes

K(1)
n ≡ K

(1)
n,l = −(E

(0)
n )2

2mec2

(
−3 +

4n

l + 1/2

)
= −mec

2

2
(Zα)4

[
− 3

4n4
+

1

n3 (l + 1/2)

]
. (8)

2 Spin-orbit coupling

In its rest frame, the electron experiences the magnetic field generated by the nucleus of charge
+Ze moving with velocity −v. Conceptually, one can estimate this magnetic field by a cavalier
version of the Biot-Savart Law,

B =
µ0

4π

(
−Zev× r

r3

)
=
µ0

4π

Ze

me r3
L,

where L is the orbital angular momentum of the electron. A more physically sound derivation
considers the electron moving with velocity v in the electric field of the nucleus, E = −∇φ(r):

B = −v ×E
c2

= −v × (−∇φ)

c2
=
v × r
c2 r

(
dφ

dr

)
=
−L
mec2 r

(
dφ

dr

)
= k0

Ze

mec2
L

r3
,

where the electric potential due the nucleus is φ(r) = k0 Ze/r. The interaction of this magnetic
field with the electron’s intrinsic magnetic moment µe = −(e/me)S is modeled via the spin-orbit
Hamiltonian

ĤLS = −µ̂e · B̂ = k0
Ze2

2m2
ec

2

Ŝ · L̂
r̂ 3

, (9)

where c = (µ0ε0)
−1/2 is the speed of light in vacuum; the factor 2 in the denominator of Eq. 9

accounts for Thomas precession, a relativistic effect.
We can now use degenerate perturbation theory to obtain the energy shifts arising from the

spin-orbit effects on hydrogenic atoms. The perturbed Hamiltonian that is to be diagonalized is

Ĥ = Ĥ0 + ĤLS =
p̂2

2µ
− k0 Ze2 r̂−1 + k0

Ze2

2m2
ec

2

Ŝ · L̂
r̂ 3

. (10)
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The eigenstates of Ĥ0 must now include the electronic spin, i.e. |nlm〉⊗|1
2
,±1

2
〉; the unperturbed

wave functions are now ψnlm(r, θ, φ)|1
2
,±1

2
〉. We can diagonalize Ĥ the straightforward—albeit

laborious—way. Alternatively, we can look for a set commuting observables in which both Ĥ0 and
ĤLS are diagonal. (This is equivalent to finding the right decomposition of the unperturbed states

in their degenerate subspace.) Such a set is easy to spot: {L̂2, Ŝ2, Ĵ2, Ĵz}, whose simultaneous
eigenkets are |n l j mj〉 (we omit the spin states |1

2
,±1

2
〉 since they are independent of the other

quantum numbers). Here, Ĵ = L̂ + Ŝ is the total angular momentum. The spin-orbit coupling in

ĤLS is then

Ŝ · L̂ =
1

2
(Ĵ 2 − L̂ 2 − Ŝ 2),

whose matrix elements in the {|n l j mj〉} basis are

〈S ·L〉n l j mj
=

~2

2

[
j(j + 1)− l(l + 1)− 3

4

]
.

The total angular momentum number takes the values j = l ± 1/2, for fixed l. Therefore,

〈S ·L〉n l j mj
=

~2

2
×

{
l , for j = l + 1/2

−l − 1 , for j = l − 1/2.

The remaining matrix elements of ĤLS to be calculated are those of r̂−3. These are〈
1

r3

〉
n l j mj

=
1

a30

Z3

n3 l (l + 1) (l + 1/2)
. (Prove it!)

Consequently, in the {|n l j mj〉} basis, the first-order correction matrix elements are

E
(1)
LS =

mec
2

4
(Zα)4

1

n3 l (l + 1) (l + 1/2)
×

{
l , for j = l + 1/2

−l − 1 , for j = l − 1/2.
(11)

3 Other contributions: the Darwin and Lamb shifts

The “Darwin term” affects the l = 0 (S) states. It is related to the effect of the rapidly oscillating
S-state wavefunction that alters the electric potential at the nucleus. Its expression is

EDarwin = k0 4π
~2

8m2
ec

2
(Ze2) |ψn00(0)|2

= k0
~2

2m2
ec

2

Z4e2

n3a30
= k0

~3

2m2
ec

Z4α

n3a30
= k0

~3

2m2
ec

Z4α

n3~3
m3

e c
3 α3

= k0
mec

2

2
(Zα)4

1

n3
,
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where

ψn00(0) = Rn0(0)Y00(θ, φ) = 2

(
Z

na0

)3/2
1√
4π
.

The Lamb shift is a minute energy correction arising from the self-interaction of the electron
with its own electromagmetic field. It results in raising the 2S1/2 state above the 2P1/2 state by a
tiny amount. Its order of magnitude is ELamb ∼ mec

2(Zα)4 α logα.
Thus, the fine structure of hydrogenic atoms is, to first order,

En = E(0)
n +K

(1)
n,l + E

(1)
LS + EDarwin + ELamb

= E(0)
n +

mec
2

4
(Zα)4

[
− 3

4n
+

1

j + 1/2

]
+ EDarwin + ELamb, (12)

valid for both l = j ± 1/2 and l = 0.
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