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Abstract

The time evolution of two-level quantum systems such as spin-1/2 particles in magnetic fields are

introduced in major textbooks by immediately casting the time-dependent Schrödinger equation

as a set of coupled differential equations. This is a dry approach, which leaves out a great deal

of physics insight that is critical for understanding the time evolution of the system. A more

useful alternative is to explore fully the richness of dynamics observed from rotating frames—

with which students may already be familiar from classical mechanics—via effective Hamiltonians.

The advantage stems from spotlighting the wealth of information contained in effective fields and

Hamiltonians rather than solving a system of differential equations from the outset.
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I. INTRODUCTION

In 1954 Rabi, Ramsey, and Schwinger 1 introduced the use of rotating coordinates for

the quantum mechanical treatment of magnetic resonance. This approach marked a turning

point in understanding quantum resonance phenomena. Its importance stemmed from the

fact that the effective Hamiltonian governing the evolution of the “rotated” state becomes

independent of time. This property considerably simplifies calculations of amplitudes, prob-

abilities, and expectation values. Conceptually, this simplification is rooted in the possibility

of describing the spin-field interaction dynamics from the rotating frame, via an effective

magnetic field. Moreover, the authors introduced the new paradigm largely without resort-

ing to a specific basis. Soon afterward, the technique became well established in the research

community. For example, Carver and Partridge 2 used it in conjunction with the density

matrix to obtain monitoring operators for optical transitions; more recently Hanson et al. 3

resorted to effective fields and Hamiltonians to discuss phase decoherence of a single spin

immersed in a “spin bath.” Over the years, some authors saw the educational potential of

the effective-field approach, used to describe a range of educational aids such as classical

analogs4 and numerical simulations5 of magnetic resonance.

Despite the conceptual potential of the original basis-free treatment, the effective-field

description has been given short shrift as a pedagogical method. It is mentioned in select

“classic” 6,7 and newer textbooks,8 as well as the quantum computing book of Nielsen and

Chuang 9 . In particular, Refs. 7 and 8 point to the concept of an effective magnetic field re-

sponsible for placing the analysis in the rotating coordinate system. On the other hand, many

widely-adopted textbooks10–13 opt for the more technical way of introducing spin resonance,

sometimes to the detriment of concept. Thus, in what has become the traditional approach,

the time-dependent Schrödinger equation (TDSE) is cast in matrix form at the outset. In

the basis formed by {| ↑〉 ≡ |+ z〉, | ↓〉 ≡ | − z〉}—the eigenstates of Ŝz (the z component of

the spin operator)—the state at time t is |ψ(t)〉 = a(t)| ↑〉+ b(t)| ↓〉. The coefficients a and

b are then obtained by solving the TDSE matrix as a set of coupled differential equations in

the rotating frame, subject to the initial condition |ψ(0)〉 = |ψ0〉 = a0| ↑〉+ b0| ↓〉. Although

it is correct from a practical viewpoint (e.g. easily amenable to numerical simulations), the

matrix approach is not as efficient in conveying a clear understanding of quantum dynamics

in rotating frames. This conclusion is drawn based on student feedback received over the
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years of teaching quantum mechanics from a variety of texts combined with written notes.

Here we advocate for introducing quantum spin resonance by following and expanding

on the original framework of Ref. 1. The central argument is that one can defer specifying

a basis toward the very end, emphasizing instead all aspects of the physics “seen” from

rotating frames, via effective Hamiltonians. This approach resonates better with students

because it keeps phenomenology in focus for a longer time, rather than delving into a system

of differential equations right away.

II. THE PREMISE

Consider a spin-1
2

particle of charge q, mass m, and g-factor g placed in a magnetic

field having a constant component B0 along the z axis and a weaker component B1 cosωt

oscillating with angular frequency ω along direction x; assume B1 � B0. The total field is

thus B(t) = ezB0 + exB1 cosωt. The spin-field interaction Hamiltonian (in SI) is

Ĥ = −µ̂ ·B = −g q

2m
Ŝ ·B = −γŜ ·B

= ω0Ŝz + ω1Ŝx cosωt =
~
2

(ω0σ̂z + ω1σ̂x cosωt)

≡ Ĥ0 + Ĥ1(t). (1)

where µ̂ is the magnetic moment operator, γ = gq/2m is the gyromagnetic ratio of the

particle (ratio of magnetic moment to angular momentum), and ω0 ≡ −γB0 and ω1 ≡ −γB1

are the frequencies of spin precession about the z and x axes, respectively, positive for q < 0

and negative for q > 0. There are three time scales in the system, represented by the three

characteristic frequencies appearing in the Hamiltonian: ω0−precession about the z axis

(set by B0), ω1−precession about the x axis (set by B1), and ω−oscillation along the x axis

(tunable). The goal is to solve the time-dependent Schrödinger equation (TDSE)

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, (2)

subject to an initial condition |ψ(0)〉 = |ψ0〉.

III. PERTURBATION OFF (B1 = 0)

This case corresponds to the interaction of the spin magnetic moment with the uniform

magnetic field B0, leading to spin precession about the z axis with angular frequency ω0.
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The Schrödinger equation is

i~
d

dt
|ψ(t)〉 = Ĥ0|ψ(t)〉, (3)

subject to an initial condition |ψ0〉 = a0| ↑〉+b0| ↓〉. Owing to the simplicity of this scenario,

we compare here the “regular” solution relying on the Ŝz-basis formulation to the effective-

field method. In the Ŝz basis, the Schrödinger equation is

(aω0)| ↑〉+ (−b ω0)| ↓〉 = 2i (ȧ| ↑〉+ ḃ| ↓〉),

This particular form of the TDSE is obtained using the representation of the Pauli matrices,

namely σ̂z = | ↑〉〈↑ | − | ↓〉〈↓ | and σ̂x = | ↑〉〈↓ | + | ↓〉〈↑ |. Since the Hamiltonian is

time-independent, the solution is readily found as

|ψ(t)〉 = Û(t)|ψ0〉 = R̂z(ω0t)|ψ0〉 = e−i(ω0t)σ̂z |ψ0〉

= a0e
−iω0t/2| ↑〉+ b0e

+iω0t/2| ↓〉. (4)

Note that unitary time evolution governed by the constant Hamiltonian Ĥ0 = ω0Ŝz is

equivalent to a rotation about the z axis by instantaneous phase angle ω0t. The rotation is

counter-clockwise (ccw) for ω0 > 0 and clockwise (cw) for ω0 < 0.

The effective-field method allows for a more insightful solution by showing explicitly

what the switch to the precession frame entails. In the precession frame, one seeks a

state |ψ(t)〉′ obtained by “unwinding” |ψ(t)〉 through an opposite angle −ω0t i.e. |ψ(t)〉′ =

R̂z(−ω0t)|ψ(t)〉. Consequently, the TDSE (Eq. 3) becomes

i~
d

dt

[
R̂z(+ω0t)|ψ(t)〉′

]
= i~R̂z(+ω0t)

d

dt
|ψ(t)〉′ + ~ω0

2
σ̂z R̂z(+ω0t)|ψ(t)〉′

= i~R̂z(+ω0t)
d

dt
|ψ(t)〉′ + Ĥ0 R̂z(+ω0t)|ψ(t)〉′

= Ĥ0 R̂z(+ω0t)|ψ(t)〉′

hence

R̂z(+ω0t)
d

dt
|ψ(t)〉′ = 0.

By acting with R̂z(−ω0t) from the left, one obtains

i~
d

dt
|ψ(t)〉′ = 0, (5)

subject to |ψ(0)〉′ = |ψ(0)〉 = |ψ0〉, whose solution is |ψ(t)〉′ = |ψ0〉. Despite its disarming

simplicity, Eq. 5 holds a wealth of conceptual information. It is the TDSE in the precession
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frame, governed by the effective Hamiltonian Ĥeff = 0. The latter can be seen as arising from

an effective magnetic field Beff = B0 +(−B0) = 0, i.e. the field “felt” in the rotating frame.

Switching back to the non-rotating frame, the state |ψ(t)〉 is determined by “unwinding”

|ψ(t)〉′ through a rotation by angle +ω0t:

|ψ(t)〉 = R̂z(+ω0t)|ψ(t)〉′ = a0e
−iω0t/2| ↑〉+ b0e

+iω0t/2| ↓〉

which is the same as Eq. 4, in the Ŝz basis.

IV. PERTURBATION ON (B1 6= 0)

The Schrödinger equation now involves the perturbed Hamiltonian,

i~
d

dt
|ψ(t)〉 =

[
Ĥ0 + Ĥ1(t)

]
|ψ(t)〉.

A. In the frame rotating with ω0 about the z axis (precession frame)

This is the usual choice of a rotating frame, commonly used with the matrix formulation.

Here, however, it is treated basis-free, through the effective-field concept. We first calculate

the state evolution with respect to a coordinate system rotating with angular frequency

ω0—the “precession frame.” The rotated state is

|ψ(t)〉′ = R̂z(−ω0t)|ψ(t)〉 ≡ c(t)| ↑〉+ d(t)| ↓〉, (6)

where c(t) = a(t)e+iω0t/2 and d(t) = b(t)e−iω0t/2, in the Ŝz basis. For an observer in the

precession frame, the magnetic field B1 appears to be rotating in the xy plane with nonzero

x and y components. We therefore expect that the effective Hamiltonian Ĥeff, seen from the

rotating frame, will include terms oscillating at ω0 ± ω despite having no Ĥ0 component.

The evolution of the state |ψ(t)〉′ in the precession frame is found by solving the TDSE

governed by Ĥeff:

i~
d

dt
|ψ(t)〉′ = Ĥeff|ψ(t)〉′. (7)

To find Ĥeff, start with the original TDSE (Eq. 2) using |ψ(t)〉 = R̂z(+ω0t)|ψ(t)〉′:

5



• LHS of (7):

i~
d

dt
|ψ(t)〉 =

~ω0

2
σ̂zR̂z(ω0t)|ψ(t)〉′ + i~R̂z(ω0t)

d

dt
|ψ(t)〉′

= R̂z(ω0t)

(
~ω0

2
σ̂z|ψ(t)〉′ + i~

d

dt
|ψ(t)〉′

)
= R̂z(ω0t)

(
Ĥ0|ψ(t)〉′ + i~

d

dt
|ψ(t)〉′

)
= Ĥ0R̂z(ω0t)|ψ(t)〉′ + i~R̂z(ω0t)

d

dt
|ψ(t)〉′.

• RHS of (7):

Ĥ|ψ(t)〉 =
[
Ĥ0 + Ĥ1(t)

]
R̂z(ω0t)|ψ(t)〉′.

The first terms on either side of Eq. 7 thus cancel out, leaving

R̂z(ω0t) i~
d

dt
|ψ(t)〉′ = Ĥ1R̂z(ω0t)|ψ(t)〉′ (8)

To obtain the TDSE for |ψ(t)〉′ we apply R̂†z(ω0t) = R̂z(−ω0t) to the left of Eq. 8:

i~
d

dt
|ψ(t)〉′ = R̂z(−ω0t)Ĥ1R̂z(ω0t)|ψ(t)〉′ ≡ Ĥeff|ψ(t)〉′. (9)

Note that Eq. 9 is the TDSE in the Interaction Picture, in which the (known) effects of the

unperturbed Hamiltonian, Ĥ0, are removed. The effective Hamiltonian can be expressed as

follows:

Ĥeff ≡ R̂z(−ω0t)Ĥ1R̂z(ω0t) (10a)

= Ĥ1(t) cosω0t−
~ω1

2
σ̂y cosωt sinω0t (10b)

=
~ω1

2
(σ̂x cosω0t− σ̂y sinω0t) cosωt (10c)

=
~ω1

2
(σ̂+e

iω0t + σ̂−e
−iω0t) cosωt (10d)

=
~ω1

4

[
σ̂+(ei(ω0+ω)t + ei(ω0−ω)t) + σ̂−(e−i(ω0+ω)t + e−i(ω0−ω)t)

]
. (10e)

The above expressions for Ĥeff are obtained using the commutation and multiplication rules

for Pauli matrices, and the definitions of the Pauli ladder operators, σ̂±, given in the Ap-

pendix. Furthermore, the effective Hamiltonian can be shown to arise from an effective

magnetic field Beff, apparent from Eq. 10c:
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Ĥeff = −γBeff(t) · Ŝ,

where

Beff = B1 (ex cosω0t− ey sinω0t) cosωt ≡ B1 e−(t) cosωt (11a)

=
B1

2

[
(ex + iey)eiω0t + (ex − iey)e−iω0t

]
cosωt (11b)

=
B1

4

[
(ex + iey)(ei(ω0+ω)t + ei(ω0−ω)t) + (ex − iey)(e−i(ω0+ω)t + e−i(ω0−ω)t)

]
. (11c)

In Eq. 11a, e−(t) ≡ ex cosω0t − ey sinω0t = ex cos (−ω0t) + ey sin (−ω0t) is a unit vector

rotating negatively (clockwise for ω0 > 0, counter-clockwise for ω0 < 0) about the z axis.

Thus, in order to study the dynamics from the precession frame, one has to apply the

magnetic field of Eq. 11 rotating in the xy plane with phase angle −ω0t. Its role is to counter

the precession with angle +ω0t, in the presence of the perturbing time-dependent field. In

the rotating-wave approximation (RWA), the rapid oscillations at ω0 +ω are neglected hence

the TDSE is approximated by

i~
d

dt
|ψ(t)〉′ ≈ ~ω1

4

[
σ̂+e

i(ω0−ω)t + σ̂−e
−i(ω0−ω)t

]
|ψ(t)〉′. (12)

When ω 6= ω0 Eq. 12 yields the Rabi oscillations. At resonance (ω = ω0), the TDSE becomes

i~
d

dt
|ψ(t)〉′ = ~ω1

4
(σ̂+ + σ̂−) |ψ(t)〉′ = ~ω1

4
σ̂x|ψ(t)〉′. (13)

Since the Hamiltonian is independent of time, the evolved state is simply

|ψ(t)〉′ = e−i(ω1t/4) σ̂x|ψ0〉 =

(
cos

ω1t

4
− i σ̂x sin

ω1t

4

)
|ψ0〉.

The required state at time t is obtained by “jumping” off the rotating frame back to the

laboratory system through a positive rotation of angle +ω0t:

|ψ(t)〉 = R̂z(+ω0t)|ψ(t)〉′ = e−i [(ω0t/2) σ̂z +(ω1t/4) σ̂x] |ψ0〉.

B. In the frame oscillating at the external (tunable) frequency ω

This method has the advantage that it leads to a time-independent effective Hamiltonian

even in the off-resonance case, upon applying the rotating-wave approximation. When seen

from the oscillating frame (with instantaneous phase angle ωt), the rotated state is

|ψ(t)〉′ = R̂z(−ωt) |ψ(t)〉. (14)
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1. Impose the RWA on the high-frequency oscillations.

The mathematical formalism follows, to some degree, the one developed in the previous

section, with ω0t replaced by ωt. The most notable difference is in the new TDSE for |ψ(t)〉′

in the oscillating frame:

i~
d

dt
|ψ(t)〉′ = ~

2
[(ω0 − ω) σ̂z + ω1 (σ̂x cosωt− σ̂y sinωt) cosωt] |ψ(t)〉′

=
~
2

{
(ω0 − ω) σ̂z +

ω1

2
[σ̂x(1 + cos 2ωt)− σ̂y sin 2ωt]

}
|ψ(t)〉′ (15)

The effective Hamiltonian governing Eq. 15 is

Ĥeff =
~∆ω

2
σ̂z + R̂z(−ωt)Ĥ1R̂z(ωt)

=
~∆ω

2
σ̂z +

~ω1

4
[ σ̂x(1 + cos 2ωt)− σ̂y sin 2ωt]. (16)

where ∆ω = ω0 − ω is the field detuning. The corresponding effective field giving rise to

Ĥeff is

Beff = ex
B1

2
(1 + cos 2ωt)− ey

B1

2
sin 2ωt− ez

∆ω

γ
. (17)

In the rotating-wave approximation, fast oscillations at frequency 2ω are neglected. This

yields the Schrödinger equation

i~
d

dt
|ψ(t)〉′ ≈

(
~ω1

4
σ̂x +

~∆ω

2
σ̂z

)
|ψ(t)〉′, (18)

associated with the time-independent Hamiltonian

Ĥeff =
~ω1

4
σ̂x +

~∆ω

2
σ̂z. (19)

2. Impose the RWA in a co-rotating frame.

The premise of this method is that the direction of the fluctuating field B1 can be seen

as the superposition of two rotations of frequency ω in the xy plane: a positive one (ccw for

ω > 0, cw for ω < 0) and a negative one (cw for ω > 0, ccw for ω < 0), defined respectively

by unit vectors e+ and e−:

ex cosωt = 1
2

[(cosωt+ sinωt) ex + (cosωt− sinωt) ey]

≡ 1
2
[e+(t) + e−(t)] (20)
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The main spin precession (imposed by the constant field B0) is in the xy plane. Therefore

the decomposition shown in Eq. 20 suggests that the only way to achieve resonance is when

the two rotations (with ω0 and ω) are co-rotating i.e. the counter-rotating component is

neglected,

ex cosωt ≈ 1
2
(cosωt+ sinωt) ex ≡ 1

2
e+(t). (21)

Eq. 21 is the rotating-wave approximation—it states that the oscillating field exB1 cosωt

is a viable approximation for a field co-rotating with the precession imposed by B0.6,7 The

Hamiltonian then becomes

Ĥ ≈ ~ω0

2
σ̂z +

~ω1

4
e+(t) · σ̂

=
~ω0

2
σ̂z +

~ω1

4
R̂z(ωt) σ̂x R̂z(−ωt). (22)

Switching to the oscillating frame via Eq. 14 leads directly to Eq. 18, governed by the time-

independent effective Hamiltonian of Eq. 19. The corresponding effective magnetic field is

easily found as

Beff = ex
B1

2
− ez

∆ω

γ
.

With respect to the rotating frame, the solution of the Schrödinger equation (18) can be

obtained via the unitary operation Ût = exp (−iĤeff t/~) on the initial state:

|ψ(t)〉′ = Ût|ψ0〉 = e−i [(ω1/2) σ̂x+∆ω σ̂z ] t/2 |ψ0〉. (23)

Despite the apparent simplicity of Eq. 23, the action of the unitary operator on |ψ0〉 is

not straightforward. The complications arise because the Hamiltonian is of the form eX̂+Ẑ ,

which has no closed form for non-commuting X̂ and Ẑ.14 Gottfried and Yan 6 provide an

elegant solution as follows. Let cx ≡ ω1/2 and cz ≡ ∆ω be the components of a vector c

in the xz plane along direction n such that (ω1/2) σ̂x + ∆ω σ̂z = cxσ̂x + czσ̂z. We seek an

equivalent expression for Ût in Eq. 23 in terms of a single rotation angle ξt and σ̂n = n · σ̂,

the Pauli operator along direction n. Thus we impose

Ût = e−i(cxσ̂x+cz σ̂z)t/2 !
= e−i ξtσ̂n t/2. (24)

To find ξt and σ̂n we start with

cxσ̂x + czσ̂z = c · σ̂ = (c cosφ)σ̂x + (c sinφ)σ̂z. (25)

9



Hence c = cn and φ an angle measured from the x axis in the xz plane. They satisfy

cx ≡ c cosφ = ω1/2,

cz ≡ c sinφ = ∆ω,

c =
√
c2
x + c2

z =
√

(∆ω)2 + (ω1/2)2.

(26)

From the above, one obtains the following expressions for σ̂n and ξt:

σ̂n =
σ̂x (ω1/2) + σ̂z (∆ω)√

(∆ω)2 + (ω1/2)2
,

ξt ≡ t c = t
√

(∆ω)2 + (ω1/2)2.

(27)

The problem is now solved: Eq. 24 with relations (27) and (26) can be easily applied to the

initial state |ψ0〉. As an example, if |ψ0〉 = | ↑〉, the rotated state at time t is

|ψ(t)〉′ = Ût |ψ0〉

= e−i ξtσ̂n t/2 | ↑〉 =

(
cos

ξt
2
− i σ̂n sin

ξt
2

)
| ↑〉

= cos
ξt
2
| ↑〉 − i sin

ξt
2

cxσ̂x + czσ̂z
c

| ↑〉

= cos
ξt
2
| ↑〉 − i sin

ξt
2

(cx
c
| ↓〉+

cz
c
| ↑〉
)

=

(
cos

ξt
2
− i cz

c
sin

ξt
2

)
| ↑〉 − i cx

c
sin

ξt
2
| ↓〉.

Alternatively, one can evaluate Eq. 23 through the spectral decomposition of Ût, regarded

as a function of Ĥeff:

Ût = e(−it/~)λ+ |λ+〉〈λ+|+ e(−it/~)λ−|λ−〉〈λ−|,

where λ± and |λ±〉 are the eigenvalues and eigenstates, respectively, of Ĥeff. This method,

however, is more laborious and will not be detailed here.

Finally, the state in the fixed frame can be obtained by applying a rotation by angle +ωt

about the z axis to |ψ(t)〉′:

|ψ(t)〉 = R̂z(+ωt) |ψ(t)〉′ = e−i(ωt/2) σ̂z |ψ(t)〉′

=

(
cos

ξt
2
− i cz

c
sin

ξt
2

)
e−i(ωt/2)| ↑〉 − i cx

c
sin

ξt
2
e+i(ωt/2)| ↓〉 (28)
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The state in Eq. 28 can be used to obtain the Rabi Formula directly—the probability of

spin flip at time t:

P|↑〉→|↓〉(t) = |〈↓ |ψ(t)〉|2 =
(cx
c

)2

sin2 ξt
2

=
(ω1/2)2

(∆ω)2 + (ω1/2)2
sin2 t

√
(∆ω)2 + (ω1/2)2

2
.

V. CONCLUSIONS

The article presents the advantages of using effective Hamiltonians instead of the tra-

ditional method of casting the problem as a system of differential equations at the outset,

when introducing quantum dynamics in senior-level quantum mechanics courses. The analy-

sis does not require the specification of an orthonormal basis set except at the very end, when

the initial conditions have to be implemented. The advantage of this approach—applied here

to the treatment of a spin in a time-dependent magnetic field biased by a constant field—

lies in keeping the physics of the spin-field interaction in focus, unlike the usual method of

expressing the Schrödinger equation in matrix form and solving a differential set early on.

We derive various expressions for the effective Hamiltonians associated with implement-

ing the Rotating Wave Approximation in the frames rotating at the precession frequency

(set by the constant magnetic field), and at the external frequency of the fluctuating field

component. In both cases, we derive sets of expressions for the effective magnetic fields

that can be used in practice to counter the rotation of the respective frame—essentially, to

implement the effective Hamiltonians.

Appendix: Pauli-operator relations

[σ̂i, σ̂j] = 2 i εijkσ̂k, σ̂i σ̂j = i εijkσ̂k,

σ̂± ≡ 1
2
(σ̂x ± i σ̂y), σ̂±| ± z〉 = 0, σ̂±| ∓ z〉 = | ± z〉.

(A.1)
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