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Chapter 1: Introduction

The prospect of extraterrestrial living has fascinated mankind for centuries. In

science fictional writings, cinema, and art, living off-Earth seems to be the next logical

step in our quest to survive and satiate our curiosity, as a species. In the context of

extraterrestrial living, NASA has published a proof of concept for a human presence on

Venus. The study has shown that sending crewed airships for long-term missions in the

upper troposphere of Venus is not only feasible but also potentially safer and less costly

than putting people on Mars. These potential advantages stem from Venus having a

thick atmosphere acting as a radiation shield and also from Venus’s proximity to Earth.

Furthermore, Venus’s gravity is closer to Earth’s, making human crews less prone to the

deleterious effects of low gravity. The High Altitude Venus Operational Concept

(HAVOC) [1], proposes to place manned airships within the upper cloud layer of Venus

in order to study its atmosphere in situ. There is also a sustained interest in the

deployment of instrumented balloons in Venus’s atmosphere, just below the upper cloud

layer, for long-duration in situ measurements.

On Earth, powerful events such as earthquakes or volcanic eruptions produce

infrasonic waves that can travel over long distances, with relatively small attenuation.

The ability to detect and quantify infrasonic arrivals in the middle atmosphere—as

opposed to detection of ionospheric perturbations from orbit—is appealing because i)

the influence of charged particles on the acoustic wavenumber can be neglected, ii)

nonlinear effects like wave steepening and period lengthening are reduced, and iii) local

effects of wind mean flow and gravity waves on wave propagation may be reduced if the
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balloon is advected with the flow. In addition, the seismic-to-acoustic coupling at

Venus’ surface is nearly 70 times more efficient than on Earth because of the dense

atmosphere; furthermore, the overall acoustic attenuation coefficient is quite small up

to 80 km (see Petculescu [2]). Thus, even relatively weak sources can produce

detectable signals.

The two principal factors affecting sound propagation are dispersion (via the

dependence of sound speed on frequency) and absorption (via the attenuation

coefficient). They are obtained, respectively, from the real and imaginary parts of the

complex acoustic wavenumber. In order to understand and predict low-frequency

acoustic propagation in the atmosphere of Venus, one must develop a model for the

wavenumber for i) the cloudless (base) environment and ii) the aqueous H2SO4 clouds.

Acoustic wave propagation in the cloudless environment on Venus has already

been investigated by Petculescu [2]. In this thesis, we provide predictions of the acoustic

wavenumber, and thus the dispersion and attenuation, in the cloud layer of Venus (~50

km altitude). The effects of the cloud layer on low-frequency acoustic propagation will

be based on a terrestrial model by Baudoin et al. [3]. In characterizing this process, the

findings could potentially aid in the monitoring of sub-surface activity on the planet, or

gain insight into lightning activity from lightning-generated infrasound.

1.1 Venus, a Brief History of Exploration

At altitudes below approximately 100 km, the lower atmosphere of Venus has a

very dynamic and hostile environment. With average surface temperatures that are in

excess of 730 K, and a dense atmosphere that exerts up to 95 bars of pressure [4], our
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ability to perform in-situ surface measurements has been extremely limited. Regardless

of the difficulty, spacecrafts from several nations have visited Venus.

In the 1970’s, the Soviet Union’s Venera spacecraft series (11-16) made the first

landings on the surface of Venus. The probes took measurements of the planet’s

atmosphere during descent and were also able to transmit data from the surface for a

short time. Evidence of lightning/thunder, surface wind speeds, soil samples,

photographs, and temperature and pressure readings were reported back to Earth [5].

Then, between 1990 and 1994, NASA’s Magellan mission used radar to map 98 percent

of the planet’s surface, and discovered that the planet’s surface was volcanically and

tectonically active, while also obtaining high resolution gravity data for 95 percent of

the planet [5]. In 2006 the European Space Agency’s (ESA) Venus Express (VEX) was

sent to study the atmosphere of Venus, from the surface to the ionosphere [5]. From

VEX radio occultation data, temperature and pressure profiles versus height were

derived from neutral number density profiles [6]. Zonal and meridional wind

measurements in Venus’ cloud layer via image tracking (using images taken with the

VIRTIS instrument [7]) was also determined. Currently, Japan’s Akatsuki probe is

studying Venus from orbit in order to better understand the atmospheric dynamics of

the planet [8].

1.2 Lower Atmosphere and Cloud Layer

The ambient atmosphere of Venus is primarily composed of CO2 (96.5%) and

N2 (3.5%). Other chemical species in trace amounts include, but are not limited to:

small amounts of noble gases, water, and various sulfur compounds which are thought
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to have resulted from volcanic activity [4]. Their respective abundances are shown in

Table 1.1, [9].

Table 1.1. Chemical species and their relative abundances of Venus’ ambient atmo-
sphere.

Species Volume Mixing Ratio
CO2 0.965
N2 0.035
O2 0-20 ppm
SO2 60 ppm
H2O 50 ppm
Ar 70 ppm
CO 50 ppm

Venus’ surface is extremely dense and hot, with average surface pressures of 92

bar and surface temperature of 735 K. Upwards into the atmosphere, temperature

decreases and pressure falls, allowing the formation of clouds at particular altitudes.

The vertical temperature and pressure profiles are shown in Figure 1.1 [6].

The entire planet is covered by clouds residing in a global layer that extends

between 45 and 70 km altitude, approximately, with thinner hazes above and below.

The bulk of the cloud layer is often referred to as the main cloud deck and is

partitioned into three distinct layers: upper, middle, and lower. The partitions are

based on in-situ probe measurements of distinctive cloud particle size distributions, and

separated by regions of low particle number density [10].

The upper cloud layer lies between ~57-60 km and is produced photochemically.

Below this, the middle (~57-50 km) and lower cloud (~50-45 km) layers are produced

by condensation from vapor transported upward by convection via Hadley circulation
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Figure 1.1. Vertical atmospheric temperature (left) and pressure (right) profiles for
Venus. The global cloud layer lies within the horizontal dashed lines
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[11, 12]. While the atmosphere is relatively calm near the surface, retrograde zonal

winds increase steadily up to 100 m/s at 60 km altitude [4]. These high westward winds

are possibly the reason for the high spatial and temporal variability in cloud opacity,

measured from infrared soundings from the Galileo spacecraft [13].

The clouds themselves are composed of aqueous sulfuric acid particles,

H2SO4·H2O, which are a binary mixture of sulfuric acid and water. The concentration

of the sulfuric acid droplets was modeled by Imamura and Hashimoto [14], and varies

within the cloud layers. The mole fraction is modeled to be χ1 ≈ 0.4 in the upper cloud

layer and χ1 ≈ 0.9, in the middle and lower layers. Subscript 1 denotes H2SO4 while the

subscript 2 will denote H2O. The model results of Imamura and Hashimoto agree with
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estimations from ground-based remote observations [15, 16, 17].

Measurements from the Pioneer Venus particle-size spectrometer indicate that

the size distribution of the cloud particles contain three characteristic radii, called

modes [18]. Mode 1 particles are the smallest mode and are found throughout the main

cloud deck. Mode 2 particles are primarily located in the upper cloud layer and are

produced by photochemical means [12]. Finally, mode 3 particles are found

predominantly in the middle and lower cloud layer, and are the largest of all modes.

There is still some disagreement regarding the composition of the mode 3 particles

whether or not they are crystalline, the tail end of the mode 2 particle distribution, or a

results of a measurement artifact [11].

Table 1.2. Average size of aqueous sulfuric acid particles by mode and their respective
location in the cloud layers.

mode # radii µm cloud location
1 <0.3 ubiquitous
2 1.3 upper ( 57-60 km)
3 3.65 mid/lower (50-57/46-50 km)
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Chapter 2: Model Review

2.1 Introduction to Acoustic Attenuation in Suspensions

The attenuation of a travelling acoustic wave in the atmosphere occurs by

several mechanisms. Some of the first known mechanisms of acoustic absorption in an

atmosphere are due to its viscous nature and its ability to conduct heat. These two

mechanisms are referred to as classical absorption [19]. In addition to classical

absorption, acoustic attenuation can also occur due to the transfer or redistribution of

energy between translational and internal (molecular vibrational/rotational) modes

[19]. In addition, the atmosphere may also contain a liquid phase, particles of which

congregate to form clouds. The interplay between the two phases and hence their

effects on atmospheric attenuation attenuation must be examined.

Acoustic propagation in a two-phase medium has been of interest since the early

20th century. The effects of phase changes on acoustic wave propagation in a liquid-gas

mixture was studied by Gubaidullin and Nigmatullin. They considered the liquid phase

as being composed of rigid spherical particles of varying size (polydisperse), suspended

in a gaseous phase, which itself is also a mixture of the liquid’s vapor phase and an

inert gas. More recently, Baudoin et al. adapted the model of Gubaidullin and

Nigmatullin for use in Earth’s atmospheric clouds, a mixture of liquid water droplets,

air, and water vapor. The presence of Earth clouds were predicted to play a significant

role in the low frequency regime (f ⪅ 10 Hz) [3].

The objective of this thesis is to give predictions of the complex acoustic

wavenumber in the presence of clouds, by adapting the model of Baudoin et al. [3],
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developed for Earth, to the Venusian atmosphere. The assumption of the model will

first be examined in the context of Venus’ atmosphere, then ambient, thermodynamic,

and transport property data will be collected to complement the model. The key

feature of clouds on Venus is that they are made of aqueous sulfuric acid particles,

which is a binary mixture of sulfuric acid and water. This is in contrast to Earth clouds

which are typically taken to be pure water in most of Earth’s clouds, though sulfuric

acid droplets certainly exist as an industrial by-product. Thus, various mixing rules will

be employed in order to estimate thermodynamic and transport parameters which need

to be considered in the model. Finally, the dependence of the attenuation coefficient

and intrinsic dispersion on various cloud parameters will be investigated.

2.2 Model Description

The theoretical foundation of this research is given by Gubaidullin and

Nigmatullin [20]. Theirs is a model which takes into account the effects of a two phase

system on a traveling acoustic wave. The system consists of spherical liquid droplets

suspended in a gaseous phase, which itself is a mixture of the liquid’s own vapors, and

an inert gaseous phase. For Venus, the liquid droplets are aqueous sulfuric acid (H2SO4

· H2O), and the inert gas is a combination of mostly carbon dioxide and nitrogen. The

model considers four physical attenuation mechanisms: (1) viscoinertial effects, (2),

heat transfer, (3) phase changes, and (4) vapor diffusion. Attenuation due to

viscoinertial effects arises from the velocity mismatch between the liquid and gaseous

phases. Heat transfer effects arise from temperature differences between the gas and

liquid brought upon by compressions and expansions caused by the passing acoustic
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wave. The local temperature deviations from thermal equilibrium caused by the

acoustic wave,can also induce phase change. Phase changes may be limited by the

diffusion of vapors produced at the droplet’s surface into the ambient gas.

In order to calculate the attenuation and dispersion of plane acoustic waves in

an aerosol, we consider the equations of continuity for the multiple phases. There are

three distinct phases present; liquid, vapor, and dry atmosphere, which we shall assign

the subscripts ℓ, v, and d, respectively. We can define a fourth phase as the

combination of the dry and vapour phases, which we will term the gaseous phase and

assign the subscript g. In the model, the presence of gravity and momentum exchanged

during phase change is neglected. There is no heat source. The suspension is dilute and

the liquid droplets are rigid spheres. The equations of continuity are:

∂(αgρg)

∂t
+∇ · (αgρgvg) = −j (2.1)

∂(αgρv)

∂t
+∇ · (αgρvvg) = −j (2.2)

ρl0
∂(αl)

∂t
+ ρl0∇ · (αlvℓ) = j (2.3)

αgρg
Dg

Dt
(vg) = −f −∇pg +∇ ·Σ (2.4)

αlρl0
Dℓ

Dt
(vℓ) = f (2.5)

αgρgC
p
g0

Dg

Dt
(Tg) = q̇g + λg0∇2T +Σ : D (2.6)

αlρl0Cl0
Dℓ

Dt
(Tℓ) = q̇ℓ (2.7)

q̇g + q̇ℓ = −j L (2.8)
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The first three equations, Equations (2.1)-(2.3), represent mass continuity for the

gaseous (dry + vapor), vapor, and liquid phases, respectively. They tell us how the

fluid’s mass is changing in space and time by evaporation and condensation of the

sulfuric acid. Following, Equations (2.4) and (2.5) represent the momentum

conservation for the gaseous and liquid phase, respectively. Equations (2.6)-(2.8),

represent the energy conservation for the gaseous and liquid phase, respectively. The

final expression, Equation (2.8) represents the relationship between heat and mass

exchange of the respective fluids as they are strongly coupled to one another through

the process of evaporation and condensation. The subscripts k = d, v, g, ℓ represent the

respective phases: dry atmospheric ‘air’, vapor, gaseous (vapor + dry atmosphere), and

liquid. The symbols αg and αl represent the volume fraction of the gaseous and liquid

phases, with αg + αl = 1. The symbols ρk, Pk, Tk,vk represent the mass density,

pressure, temperature, and velocity of the respective phase. The derivative

Dk/Dt = ∂t + vk · ∇ represents the convective derivative, and it is used for its

respective phase. The strain rate tensor ¯̄D and the stress tensor ¯̄Σ are represented by

the equations ¯̄D = 1
2

[
∇v + (∇v)T

]
and ¯̄Σ = 2ηg0

¯̄D+ (ζg0 − 2ηg0/3)(∇ · v)¯̄I, with

v = αgvg + αlvℓ representing the average velocity of the suspension, and ηg0, ζg0 and

λg0 representing the dynamic shear viscosity, dynamic bulk viscosity and heat

conductivity of the gaseous phase, respectively. Cp
g0 and Cl0 are the isobaric specific

heat of the gaseous phase and the specific heat of the liquid phase. The tensor ¯̄I is the

unit 2nd-order tensor, ¯̄I =
∑
ij

δij êiêj. Finally, the terms j, f and q̇ represent the mass

rate per unit volume due to phase change, the body force per unit volume applied to
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the liquid particles, and the rate of change of heat per unit volume.

The velocity and temperature of a single liquid droplet, which we shall denote

with a subscript p, depends on its size as well its location in space and time, that is

vp = vp(a, x, t) and Tp = Tp(a, x, t). When the acoustic wavelength is sufficiently larger

than the droplet spacing, a continuum formulation best describes the gaseous and

liquid phases. Since the liquid phase of our system is composed of a discrete set of

particles, the velocity and temperature fields describing the liquid phase can be

represented as averages over all droplet sizes, vℓ = ⟨vp(a, x, t)⟩a and Tℓ = ⟨Tp(a, x, t)⟩a.

The averaging mechanism by which the liquid fields are obtain are given by:

⟨g⟩a =
∫ amax

amin
Vpg(a)N(a)da∫ amax

amin
VpN(a)da

. (2.9)

Here g is some function to be averaged, Vp is the particle volume, which we consider to

be rigid spheres (i.e. Vp = 4/3πa3), and N(a) is the particle size distribution function.

The averaging is taken over the limit of all particle sizes in the interval [amin, amax].

Outside of this range the distribution function is zero [20].

N(a) =

{
0, for amin > a > amax
N, for amin < a < amax

}
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The term N(a)da represents the number of particles per unit volume across

some small region of radii (a, a+ da). Typically, but not exclusively, atmospheric

droplet size distributions exhibit the same characteristic shape in many different types

of clouds and meteorological conditions. Generally, the shape is that of a log-normal or

gamma distribution, and can be modelled as such [21]. In this thesis, the log-normal

distribution is used:

f(a|µ, σ) = 1

aσ
√
2π
e−

(ln(a)−µ)2

2σ2 , (2.10)

where a is the droplet radius and µ and σ are the parameters which describe the

distribution. They and are not representative of the distribution’s mean and variance

[22].

From the distribution function, the total number of droplets per unit volume n,

as well as the volume fractions for the gas and liquid phases, αg and αl, can be found

through integration [20]:

n =

∫ amax

amin

N(a)da (2.11)

αl =

∫ amax

amin

VpN(a)da =

∫ amax

amin

4
3
πa3N(a)da. (2.12)

The volume fractions are related by the completion relation, αg + αl = 1. In general,

the volume fraction of a mixture is defined as the ratio of constituent volume to the
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total volume of the mixture (gaseous + liquid):

αi =
Vi
V

=
Vi∑
i Vi

. (2.13)

The subscript i above pertains to all fluid phases: dry air, vapor, and liquid. Thus,

V = Vg + Vℓ in the above equation, is the total volume of the entire atmospheric

mixture (i.e. gas and liquid phases).

The dispersion relation is obtained by first reducing the system of Equations

(2.1) - (2.8) to one-dimension. The system is then linearized about equilibrium by

assuming small plane wave disturbances. Letting ψ(x, t) represent various state

variables which describe the fluid (e.g. ψ = p, ρ, T, v etc.), one can write, in the linear

approximation,

ψ(x, t) ≈ ψo + ψ′(x, t). (2.14)

ψo denotes the equilibrium value while ψ′ represents first-order acoustic perturbation,

assumed much smaller than their equilibrium counterparts, i.e. ψ′ ≪ ψo. Further, since

perturbation terms are assumed small, second-order perturbation terms (e.g. P ′ · ρ′) are

neglected.

All acoustic perturbations are considered to have plane wave solutions i.e.

ψ′(x, t) = Ãψe
i(k̃x−ωt), (2.15)
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where Ãψ is the complex wave amplitude in appropriate units, k̃ = k + ik∗ is the

complex wave number, and ω = 2πf is the angular frequency. It follows that

ψ′(x, t) = Ãψe
−k∗xei(kx−ωt). (2.16)

In this form we can clearly see that the perturbation term, ψ′, decays exponentially

with a decay constant equal to the imaginary part of the complex wavenumber k∗,

containing attenuation effects.

The model further assumes all gaseous phases are ideal, the total pressure

follows Dalton’s law of partial pressure:

P =
n∑
i=1

Pi, (2.17)

and the total mass of the gas is the sum of its constituent masses ρg = ρd + ρv. The

saturation vapor pressure, P sat, is related to the latent heat of

evaporation/condensation L through the Clausius-Clapeyron (CC) equation:

dP sat

dTd
=
Lρv
Td

(2.18)

Expressions for the flux terms of mass, momentum and energy flux are needed to

fully specify and solve the system of equations presented above. The terms j, f, q̇ are
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provided by Gubaidullin and Nigmatullin [20]. First, expressions for the mass rate per

unit volume j (in kgm−3 s−1) arise from equating the flux of evaporation given by the

Hertz-Knudsen-Langmuir formula jβ, to the flux of diffusion of vapor through the air

jβ = jD = j [3], with:

jβ = αℓoρℓo
ro
Pgo

⟨
Pv − PΣ

τβ

⟩
a

(2.19)

jD = αℓoρℓo
ro
Pgo

⟨
PΣ − P sat

τ̃D

⟩
a

, (2.20)

where j has been averaged over all droplet sizes. The terms ro = ρgo/ρℓo represent the

ratio of densities, Pv and PΣ are the vapor pressure and the vapor pressure reached just

after evaporation, but before its diffusion in the inert gas, τβ is the real time associated

with phase changes and τ ∗D is the complex time associated with diffusion through the

air. The average force per unit volume for a liquid particle moving within a viscous

fluid can be represented as the sum of the viscous force due to Stokes’s drag Fη, the

Archimedes buoyant force FA, the force of added-mass Fm and the Basset hereditary

force FB. The Stokes’s Drag force of a spherical particle, suspended in a viscous

medium, arises due to the relative velocity of that particle to the surrounding medium

and is given by:

Fη = 6πηga(vg − vℓ) (2.21)
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The buoyant force arises from differences in particle density to the surrounding medium

and is given by:

FA =
4

3
πa3ρg

∂vg
∂t

(2.22)

The unsteady added-mass and Basset forces arise from; (1) as a particle accelerates

through a viscous fluid, the surrounding fluid must be moved in order to accommodate

the incoming particle, and thus imparts a retarding force, and (2) the need for the

boundary layer to adapt to the new conditions as the particle is accelerated through the

fluid. The added-mass and Basset forces are:

Fm =
2

3
πa3ρg

∂

∂t
(vg − vℓ) (2.23)

FB = 6a2
√
πρgηg

∫ t

−∞

∂

∂τ
(vg − vℓ)

1√
t− τ

dτ (2.24)

The expression for the force per unit volume f (in Nm−3) is given by:

f = αℓoρℓo

⟨
vg − vℓ
τ̃ν

− vg
τ̃A

⟩
a

, (2.25)

where f has been averaged across all droplet sizes. The force experienced by the

particles is averaged across all droplets sizes and depends on the time it takes for the

particle to respond to the acoustic wave forcing. Here τ̃ν is the complex time associated

with the Stokes, Basset, and added-mass force, while τ̃A, is a complex time associated
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to the Archimedes buoyant force. Similarly, the rates of change of heat per unit volume

q̇ (in Jm−3 s−1) are obtained by solving the unsteady heat equation inside and outside

the droplet surface with surface temperature TΣ [20]:

q̇g = −αgoρℓoroCP
go

⟨
Tg − TΣ
τ̃Σg

⟩
a

(2.26)

q̇ℓ = −αℓoρℓoCℓo
⟨
Tℓ − TΣ
τ̃Tℓ

⟩
a

. (2.27)

The complex times τ̃Σg and τ̃Tℓ represent the relaxation times for heat conduction

associated with the gaseous and liquid phases, respectively.

The various relaxation times which appear in the flux terms above arise

naturally from their respective governing equations. They represent the time it takes

for the medium to adjust to new equilibrium conditions imparted by the acoustic

perturbations. Times marked with a tilde (e.g. τ̃) are complex quantities while times

without are real. τ denotes steady transfer times while θ denotes unsteady transfer

times. The times are associated with the following processes:

• Momentum transfers

τν =
2

9

ρℓoa
2

ρgoνgo
θν =

a2

νgo

τ̃ν =
τν[

1− 1
9
iωθν +

1−i√
2

√
ωθν

] τ̃A =
−i
ωro

(2.28)
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In the expressions above, νgo = ηgo/ρgo represents the kinematic viscosity of the gas and

ro is the density ratio defined above. The three terms in τ̃v correspond, respectively to

Stokes drag, added-mass, and Basset forces (where τv is the real time associated with

Stokes drag), and τ̃A is associated with Archimedes buoyancy force. It can be seen that

for the low frequency case, when ω ≪ 1, the relaxation time τ̃ν ≈ τν . That is, the

added-mass and Basset forces become negligible for low frequencies and the force on a

particle is dominated by Stokes drag. The force due to added-mass becomes dominant

for high frequencies ω ≫ 1, and added-mass and Basset forces are important for

intermediate frequencies.

• Heat transfer in gaseous phase

θTg =
a2

κgo
zg =

1− i√
2

√
ωθTg ηg =

1

1 + zg

τT =
1

3

ρℓoa
2

ρgoκgo
τ ∗Tg =

1

3
θTgηg τ̃Σg =

αgo
αgo

τ ∗Tg (2.29)

• Heat transfer in liquid phase

θTℓ =
a2

κgo
zℓ =

1− i√
2

√
ωθTℓ

ηℓ =
5[3zℓ(3 + z2ℓ ) tanh(zℓ)]

z2ℓ (tanh(zℓ)− zℓ)
τ̃Tℓ =

1

15
θTℓηℓ (2.30)

where the parameters κgo = λgo/ρgoC
p
go and κℓo = λℓo/ρℓoC

p
ℓo. The relaxation time τT

being the time associated with steady heat transfer in the absence of phase-change

effects.
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• Vapor diffusion in air

θD =
a2

D
zD =

1− i√
2

√
ωθD ηD =

1

1 + zD

τD =
1

3

ρℓoa
2

ρgoD
τ̃D =

1

3

Rv

Rg

(1− kvo)θD (2.31)

The parameters D and Rv/g represent the binary diffusion coefficient and the specific

gas constant for the vapor/gas phase, respectively, while kvo = ρvo/ρgo represents the

specific humidity.

• Evaporation and condensation

τβ =
1

3

√
2π

γv

γgcvoa

βc2go
(2.32)

The parameters γk and cko =
√
γkR∗

kT are the adiabatic index and ideal sound speeds

for phase k and β is the evaporation coefficient of water, found in the

Hertz-Knudsen-Langmuir formula.

Acoustic attenuation and dispersion can also be framed in the context of the

relaxation times. A gas-vapor-liquid system perturbed from equilibrium will adapt to

the new conditions in order to reacquire equilibrium. It has been shown that for

momentum and thermal transfers, the attenuation peaks around the values ωτν ≈ 1 and

ωτT =≈ 1, respectively [23]. For phase change effects, the attenuation is dependent

upon the amount of liquid present. Thus, the attenuation peak is maximum near

ωτD ≈ m, where m = αℓoρℓo/αgoρgo is the quantity of liquid droplets [24, 25]. For each
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relaxation time τ , one can associate a characteristic frequency. These characteristic

frequencies correspond to the locations of maximum attenuation, and are defined in

Table 2.1.

The relaxation time for momentum transfers is on the order of 10−4 s, which

corresponds to a characteristic frequency of fν = 500 Hz. Thus attenuation due to

momentum exchanges should be maximum in this region. Thermal transfers are

maximum in the kHz region. Attenuation due to phase changes brought upon by the

acoustic wave is influenced by two relaxation times. The first is the time taken for a

liquid droplet to evaporate/condense, which occurs quite rapidly, on the order of 10−10

s. The second relaxation time to influence phase changes is the the time it takes for

recently evaporated vapors to diffuse into the surround ambient gas, which occurs on

time scales on the order of 10−4 s, much slower than the evaporation time. Thus, the

particle is able to evaporate much more rapidly than the vapor is able to diffuse into

the atmosphere and thus a buildup of vapor occurs on the droplet surface, saturating

the local space and slowing the evaporation process. This is reflected in the

characteristic frequencies of evaporation/condensation fβ and diffusion fD.
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Table 2.1. Relaxation times for momentum transfer τν , thermal transfers τT , vapor
diffusion τD, and evaporation/condensation τβ and their respective characteristic frequen-
cies.

- Order (sec.) Frequency freq.(Hz) Transfer Type
τν 10−4 fν = 1/(2πτν) 500 Momentum
τT 10−5 fT = 1/(2πτT ) 1,000 Thermal
τD 10−4 fD = m/(2πτD) 0.02 Diffusion
τβ 10−10 fβ = 1/(2πτβ) 109 Eva./Cond.

2.3 Dispersion Relation

The dispersion relation for our plane waves solutions takes on the form:

k(ω) =
ω

cgo

√
V (ω)D(ω), (2.33)

where

V (ω) = 1 +mX1(ω)

D(ω) = 1 +mX2(ω)

and

X1(ω) =
(αgo − ro) ⟨hF ⟩a − αgoro

1 +mro ⟨hF ⟩a

X2(ω) = (γgo − 1)
⟨hT2⟩a − R̄vkvoγgo

(
R̄vC̄P

go ⟨hT3⟩a − 2L̄ro ⟨hT1⟩a −M1Λ
)

1 +m(⟨hT2⟩a −B ⟨hT3⟩a −M2Λ)
.
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Both functions V (ω) and D(ω) are functions of the acoustic wave frequency, hidden in

the relaxaion times, as well as many thermodynamic variables. The function V (ω)

represents the contributions of momentum transfers, and D(ω) represents the

contributions of thermal and mass transfer. They are of the form 1 +m, where

m =
αℓoρℓo
αgoρgo

is the liquid mass fraction, as effects induced by the presence of liquid

droplets are proportional to the concentration of the liquid droplets.

2.4 Model Assumptions

The model relies on a number of simplifying assumptions. Below, I provide a

semi-quantitative discussion of these assumptions.

The ideal gas assumption. Each gas phase species is considered to obey the ideal gas

law,

Pi = ρiR
∗
iTg, (2.34)

where R∗
i = R/Mi is the specific gas constant with M being the molar mass, and

i = v, d, g. This assumption is validated by the compressibility factor of the gas

P/ρR∗T ; deviations of this quantity from 1 is a measure of how much the gas differs

from ideal. Figure 2.1 gives the compressibility factor of the ambient atmosphere on

Venus versus altitude. Within the cloud deck the maximum deviation is near the upper

cloud (~67 km) and of the order of 5%. Above the cloud deck the compressibility factor

becomes quite large with altitude.
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Figure 2.1. Ambient gas compressibility versus altitude. Within the cloud layer the
maximum deviation is in the upper cloud layer(of ~5%)
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The continuum approximation. The upper troposphere of Venus is treated as a

continuum, via the Navier-Stokes-Fourier equations. In the literature, the problem of

when a medium can be considered continuous or not is somewhat diffuse and

subjective. The answer lies in how many collisions occur between particles in a certain

characteristic time (e.g. the acoustic period) or, equivalently, how the mean-free-path

compares to a characteristic length (e.g. the acoustic wavelength). The parameter that

is used typically to establish the “continuity” of a medium is the Knudsen number, Kn,

defined as the ratio of the molecular mean free path to a representative length scale:

Kn =
ℓ

L
, (2.35)

where ℓ is the molecular mean free path and L is a characteristic length. A fluid is
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assumed to diverge from a continuum, to the point that the Navier-Stokes-Fourier

theory starts to fail, when Kn > 0.1 An estimate for the Knudsen number in the cloud

layer, using the cloud particle size as the characteristic length i.e. L = a, is

Kn = ηgo/ρgocgoa. Values for ηgo and ρgo are given in Table 3.8, cgo =
√
γgR∗

gTg is the

ideal gas sound speed, and a is the mean cloud droplet size (modes). The Knudsen

numbers for the three modes are given in Table 2.2. The values lie within the range

0.010 ≤ Kn ≤ 0.13. Thus, there are roughly ten gas particle collisions per mode-1

particle and 100 collisions per mode-3 particles. In this region the Navier-Stokes-Fourier

equations still describe the flow adequately, with some reservations.

Table 2.2. Knudsen numbers for various modes.

Mode (µm) 1 (a = 0.3) 2 (a = 1.3) 3 (a = 3.65)
Kn 0.13 0.038 0.010

Since we are free to choose the representative length scale L, one can define an acoustic

Knudsen number Knac:

Knac =
ℓ

λ
, (2.36)

in which ℓ is still the gas mean free path length and λ represents the acoustic

wavelength. An approximation for the acoustic Knudsen number is the same as before:

Knac =

(
ηgo
ρgocgo

)
1

λ
=

(
ηgo
ρgoc2go

)
f. (2.37)
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where the relation c = λf was used. For the frequency interval 0.01 Hz < f < 10 kHz,

we obtain acoustic Knudsen numbers in the range of 1.3× 10−13 < Kn < 1.3× 10−6.

Thus the continuum approximation is well satisfied for the acoustic Knudsen number.

In fact, to satisfy Knac < 0.1, we are bounded to the frequency region less than about

100 MHz, which is 104 times larger than the largest frequency used in the model.

The dilute-suspension approximation. The model also assumes the suspension is dilute

in order to neglect droplet-droplet interactions. Thus, the volume fraction αl of the

liquid phase must necessarily be small. The volume fraction can be estimated from the

cloud density ρcl (mass of condensate per total volume). The cloud density is

introduced in section 3.3, and has a value of ρcl ≈ 4.5× 10−5kgm−3. This value

represents the maximum cloud density with no precipitation or other cloud dynamics

and whose real value lies between 1–100% of ρcl. At most, (100% ρcl), the estimate for

the volume fraction occupied by the liquid phase is αl = ρcl/ρℓo ≈ 2× 10−8 ≪ 1, where

ρlo is the mass density of the liquid phase which is given in Table 3.3. In reality, αl will

be smaller and thus satisfies the dilute approximation.

The plane-wave assumption. Acoustic waves are assumed to be plane waves in the

model. The validity of this assumption depends upon the scale on which the ambient

parameters (e.g. temperature, density, pressure, composition etc.) change with respect

to an acoustic wavelength. Hence, in the context of this model, as long as the cloud

properties do not change appreciably with height or, equivalently, the wavelengths of

interest are smaller than vertical cloud inhomogeneities, the plane-wave assumption

should be a reasonable premise.
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Chapter 3: Determination of Model Parameters

3.1 Ambient Atmospheric Parameters

In order to complete the model, atmospheric data must be gathered to satisfy

the temperature-pressure dependence of the input parameters in the cloud region.

Mixture rules must also be used in order to account for the multi-species condensates

and vapor phases. Ambient temperature and pressure profiles are based on averaged

values of VEX measurements taken from Tellmann et al. [6]. Thermophysical and

transport parameters (specific heats, viscosities, thermal conductivities, and binary

diffusion coefficients) of the pure species are obtained/calculated from a variety sources.

Parameters for pure water are obtained mostly from Pruppacher and Klett [21]. Those

of sulfuric acid, carbon-dioxide and nitrogen, are taken from the NIST Chemistry

Webbook [26], Daubert et al. [27], and Poling et al. [28]. Cloud particle size

characteristics are obtained from James et al. [13]. The saturation vapor pressure of

pure sulfuric acid is taken from Ayers et al. [29] and Kulmala and Laaksonen [30].

Cloud density and atmospheric composition is taken from Sanchez-Lavega [9]. The

cloud droplet acid composition is taken from Imamura and Hashimoto [12, 14]. Partial

vapor pressures above the liquid phase are obtained from Gmitro and Vermeulen [31].

Additional consideration must be taken to account for the aqueous sulfuric acid

condensate (H2SO4·H20). Mixture rules are mostly found in Poling et al. [28].

The entire cloud deck lies approximately in the altitude range of

45 km ≤ z ≤ 70 km. This corresponds to an ambient temperature and pressure range of

386 K ≤ Td ≤ 230 K and 1.98× 10−1 MPa ≤ Pd ≤ 3.69× 10−3 MPa, respectively, and
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an atmospheric density of 2.693 kgm−3 ≤ ρd ≤ 8.393× 10−2 kgm−3. A representative

altitude of z = 50 km, and its respective temperature and pressure, is selected as input

for all model parameters. This altitude has been chosen for several reasons. First, the

empirical formula which gives the thermal conductivity of liquid sulfuric acid is only

valid in the temperature range 273.59 K ≤ T ≤ 371.32 K, which corresponds to the

altitude range of ~48-59 km. This is the most narrow temperature region of all the

parameters, and thus sets a boundary for our model. Second, the concentration (mole

fraction) of sulfuric acid in the cloud droplets is roughly constant below ~50 km

(χ1 ≈ 0.9) [14, 12]. Third, all three modes are present in the middle and lower cloud

layer (46-57 km altitude). This allows us to investigate the effects of the mean droplet

size on the absorption and sound speed at a single height (i.e. a single

temperature-pressure) . Finally, the European Space Agency and NASA are considering

floating platforms such as aerostats (European Venus Explorer, or EVE) and even

manned airships (HAVOC) cruising at this elevation. The presence of strong zonal

winds in this region will be utilized as a form of transport around the planet [1, 32].

The ambient temperature, pressure, atmospheric density and cloud droplet

concentration at z = 50 km are given in Table 3.1 [6, 14].

Table 3.1. Ambient parameters used for model input at an altitude of z = 50 km. χ1

is the mole fraction of sulfuric acid inside the liquid droplet at the given height.

z (km) Td (K) Pd (MPa) ρd (kgm
−3) χ1

50 351.5 0.107 1.594 0.9
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Values for the evaporation coefficient β is largely unknown with little agreement

in the literature. Values for water have been reported in the range from β = 0.01 to

β = 1. Baudoin et al. [3] evaluate its significance within the context of their model.

Their results show that for two orders of magnitude of change in β (from 0.01-1), the

change in the attenuation coefficient is less than one order of magnitude. Thus the

value β = 1, chosen in their work, is also adopted here. A historical review of the

parameter is given by Eames et al. [33].

3.2 Particle Size Distribution Function

In clouds a variety a particle sizes are encountered resulting from various

mechanisms of droplet growth (i.e. evaporation/condensation or collision and

coalescence). The particle sizes can be described by a statistical distribution denoted by

N(a). On Earth, under a variety of meteorological conditions, the size distribution can

be approximated with a log-normal or gamma distribution, as well as empirical ones

[21]. As for Venus, a majority of the size distributions found in the literature are

log-normal [18, 34, 35], and will thus be used in this thesis.

The log-normal distribution is given by the formula

N(a|µ, σ) = 1

aσ
√
2π
e−

(ln(a)−µ)2

2σ2 , (3.1)

where a is the droplet radius and µ andσ are the parameters which describe the

distribution and are not representative of the distribution’s mean and variance [22].

The mean and variance for the log-normal are functions of the parameters µ and σ:
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mean = eµ+σ
2/2

var = e(2µ+σ
2)(eσ

2 − 1). (3.2)

Inversely, the parameters µ and σ can be found if the distributions mean and variance

are known:

µ = ln
(
mean2/

√
var +mean2

)
σ =

√
ln(1 + var/mean2) (3.3)

Measurements taken by the Pioneer Venus cloud particle size spectrometer (LCPS)

show that the size distributions are multimodal in all cloud regions[18, 34] see Table

1.2. Inputs for the log-normal particle size distribution are taken from Grinspoon et al.

[34] and shown in Table 3.2.

Table 3.2. Average particle sizes and their respective standard deviations taken from
Grinspoon et al. Each mean value is obtained from a log-normal distribution.

Mode Mean radius a(µm) std. dev.
1 0.3 1.56
2 1.0 1.29
3 3.65 1.28
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3.3 Cloud Density and Volume Fractions

The density of the cloud is given as the ratio of the condensate mass to the

total atmospheric volume. Approximate values for cloud density ρcl are obtained from

Sánchez-Lavega et al. [36]. At the height of ~50 km, the cloud density is calculated to

be ρcl = 4.5× 10−5 kgm−3. This value is represents the maximum possible cloud

density in the absence of cloud dynamics and precipitation. In reality, the cloud density

is highly variable. Measurements made by the the Galileo Near-Infrared Mapping

Spectrometer (NIMS) revealed thick opaque cloud regions beside bright cloudless spots

[34]. Hence, Sánchez-Lavega recommends multiplying ρcl by a factor ranging from 0.01

to 1. As no particularly value is recommended, a default value of 0.8 is used. The effects

of varying cloud density on the attenuation and dispersion is examined in Chapter 4.

3.4 Thermodynamic Parameters

The liquid density of the sulfuric acid is well known and can be found readily

from a multitude of sources. On the other hand, the vapor density is somewhat more

difficult to obtain. The vapor phase above sulfuric acid is composed of water, sulfuric

acid, and sulfur trioxide from the dissociation of the acid [31]:

H2SO4(g) = H2O(g) + SO3(g) (3.4)

The partial vapor pressures of sulfuric acid, water, and sulfur trioxide above aqueous

sulfuric acid are calculated as functions of acid concentration at various temperatures

by Gmitro and Vermeulen [31]. From pure component partial vapor pressure data, the
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respective densities can be obtained through the ideal gas law (2.34). At the altitude

z = 50 km, the acid concentration (in mole fraction) of the liquid droplets are χ1 = 0.9.

This corresponds to a concentration by weight of approximately w1 ≈ 0.98, which is

obtained through the relation:

χi = wi
M

Mi

, (3.5)

where Mi and M represent the molar mass of component i, and the mean molar mass

(defined in section 3.6). The pure component densities and partial vapor pressures for

our given temperature and weight fraction are presented in Table 3.3.

Table 3.3. Calculated vapor densities from partial pressures and specific gas constants.

Component (i) ρiv × 10−4(kgm−3) Piv (Pa) R∗
i (J kg

−1K−1)

1 (H2SO4) 2.24 6.66 84.78
2 (H2O) 1.64 26.66 461.40
3 (SO3) 0.018 0.067 103.84
Total 3.90 33.39

The density and partial pressure of sulfur trioxide vapor is smaller by at least two

orders of magnitude compared to water and sulfuric acid. Thus, contributions from

sulfur trioxide could be ignored for simplicity. The total density and pressure of the

vapor phase, ρv and Pv, respectively, is the sum of its components. Their values are

given in the last row of Table 3.3.

3.4.1 Latent heat. One of the more difficult parameters to obtain is the latent

heat of evaporation L. For water, it is given in Pruppacher et al. [21] by the formula:
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Lwater = 597.3

(
273.15

T

)g

, (3.6)

where

g = 0.167 +
(
3.67× 10−4

)
T. (3.7)

As for sulfuric acid, the latent heat is found through the use of the Clausius-Clapeyron

(CC) relations and the saturation vapor pressure (SVP). The CC relation relates the

slope of a phase boundary line of a single chemical species on a pressure-temperature

curve to the latent heat. The Clausius-Clapeyron equation is given by:

dP sat

dTd
=

L

Td∆v
. (3.8)

The parameters P sat, Td, L, and v represent the saturation vapor pressure, droplet

surface temperature, latent heat, and specific volume (inverse density) respectively,

with ∆v = vv − vl. Since we are considering a liquid-gas system, the specific volume of

the vapor phase is much larger than that of the liquid which implies ∆v ≈ vv = (ρv)
−1,

and thus we obtain the relation given in Equation (2.18):

dP sat

dTd
=
Lρv
Td

.
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The SVP is the pressure at which the fluxes of evaporation and condensation are

equivalent (in equilibrium). The saturation vapor pressure of sulfuric acid is given as

functions of temperature and mole fraction of the H2SO4·H2O solution,

ln P sat(T, χacid) = ln P sat
1 (T ) +

µm1 (T, χacid)− µ1(T )

RT
. (3.9)

The first term on the right is the natural logarithm of the SVP for pure sulfuric acid,

while the second term, µm1 −µ1, represents the difference between the chemical potential

of the mixture and the pure component chemical potential, and R the universal gas

constant. Data for the relative chemical potential is tabulated in Zeleznik [37].

Measurements of the SVP of sulfuric acid was taken by Ayers et al. [29] in the

temperature region 338-445 K. Kulmana and Luuksanen [30] theoretically derived an

expression for the SVP, and expanded the temperature range to larger values than that

used by Ayers. The expressions for the SVP is given as,

ln P sat
1 (T ) = 16.259− 10156

T
+ 7.42

(
1 + ln

To
T

+
To
T

)
, (3.10)

where P sat
1 has units of bars, T in kelvin, and To = 385 K. With the temperature

dependence of P sat
1 known, it is possible to evaluate the derivative on the left side of the

CC relationship with some reservations. Since the temperature dependence of the

relative chemical potential is unknown, it is assumed that it does not change
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appreciably with a small change in temperature and is treated as constant.

Additionally, since we constrained the model to altitudes below 50 km where the mole

fraction is almost constant, the change in concentration with temperature (altitude) is

negligible. This assumption allows us to evaluate the derivative of Equation (3.9).

Evaluating the derivative of (3.9), an expression for the specific latent heat L

can be obtained,

L =
Td
ρv

dP sat

dTd
(3.11)

For the ambient temperature and pressure at z = 50 km, the relative chemical potential

is (µm − µ)/RT = −0.3779 and the density of the vapor phase is given in Table 3.3). A

value of L ≈ 1.66× 104 J kg−1 is calculated for the model.

3.4.2 Specific heat. Values for the gaseous isobaric specific heat are given by a

polynomial expansion in terms of temperature from various sources. The three

equations below are used.

Cp(t) = a+ bt+ ct2 + dt3 + e/t2, (3.12)

Cp(T ) = (a+ bT + cT 2 + dT 3 + eT 4) ·R (3.13)

Cp(T ) = a+ b

[
(c/T )

sinh(c/T )

]2
+ d

[
(e/T )

cosh(e/T )

]2
(3.14)

where a-e are constants, and t represents a modified temperature, t = T/1000, with T
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in kelvins, and R = 8.314 Jmol−1K−1 is the specific gas constant. Table 3.4 denotes

which heat capacity equation is used for each gaseous species, their respective valid

temperature ranges, and coefficient values.

Table 3.4. Constants for Equations (3.12) - (3.14).

Species N2 H2O CO2 H2SO4
Eqn. (3.12) (3.12) (3.13) (3.14)

Temp. Range (K) 100-500 50-1000 50-1000 100-900
Coefficients

a 28.98641 30.09200 3.259 3.8310×104

b 1.853978 6.832514 1.356×10−3 1.119×105

c -9.647459 6.793435 1.502×10−5 4.209×102

d 16.63537 -2.534480 -2.374×10−8 -4.73×104

e 0.000117 0.082139 1.056×10−11 5.48×102

Equation (3.12) is obtained from the Nist Chemistry Webbook [26], Equation (3.13) is

obtained from Poling et al. [28], and Equation (3.14) is obtained from Daubert et al.

[27]. Values for liquid phase specific heat of H2SO4·H2O solutions are tabulated in

Zeleznik [37].

3.5 Transport Properties

Transport processes are those which occur due to gradients of, e.g.,

temperature, mass, or momentum. This asymmetry will cause a spontaneous flow of

said temperature, mass, or momentum in order to reach a state of equilibrium. Thus,

the transport properties describe the fluids response to these gradients. The model calls

for viscosity, thermal conductivity and binary diffusion coefficients. Their values, under

the conditions of this study (z = 50 km and the corresponding Td and Pd), must be

found for each pure component separately, and then properly combined. This is done
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through the methods listed below. Mixtures are obtained using the appropriate mixing

rules, Wilke’s equation, and the Wassilijewa formula and are discussed in Section 3.6.

3.5.1 Viscosity. The three main transport properties of a fluid include: thermal

conductivity, diffusion coefficient, and viscosity, which arise due to gradients in

temperature, molecular concentration, and momentum respectively. It can be thought

of as a reflection of the microscopic molecular forces which arise as the fluid interacts

with its boundaries moving at different velocities. It arises from Newton’s second law as

which relates the stress imparted onto the fluid to the fluid velocity gradient with

respect to the boundary:

τ = η
dv

dy
(3.15)

In Equation (3.15) τ represents the shear stress tensor of a parcel of fluid, dv

dy
is

the spatial velocity gradient along the y-axis for a fluid flowing along the x-direction,

and η is the proportionality constant defined as the viscosity of the fluid in SI units of

Pa s.

Pure component viscosity values of the ambient atmosphere gases (i.e. CO2 and

N2) are extracted from the NIST Chemistry Webbook [26] at the appropriate

temperature and pressure corresponding to z = 50 km. The temperature dependence of

water vapor viscosity is obtained from Daubert et al. [27]. The formula is given as:

η2v =
aT b

1 + c
T
+ d

T 2

, (3.16)
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where the constants a-d are given in Table 3.5. The formula for η2v is valid for the

temperature range T ∈ [273.16, 1073.15] K with an error of < 1% reported by the

author.

Vapor phase viscosity values for sulfuric acid are found through empirical

formula given in Poling et al. [28]. Viscosity values are calculated from a dimensionless

reduced viscosity, ηr, which is a function of the reduced temperature, Tr = T/Tc,

defined as the ratio of the gas temperature to its critical temperature:

ηr = ηξ = f(Tr). (3.17)

The term ξ is called the inverse viscosity, in Pa−1 s−1, and has the form of:

ξ = 0.0176

(
Tc

M3P 4
c

)1/6

. (3.18)

The subscript c on the equations above represent critical values, and are available for

many substances in Daubert et al. or the NIST Chemistry Webbook [27, 26]. The

critical values for H2SO4 are given to be,

Tc = 925 K, Pc = 64× 105 Pa, Vc = 177.03× 10−6 m3mol−1, which yield a reduced

temperature of Tr ≈ 0.38 and an inverse viscosity of ξ1v ≈ 3.47× 104 Pa−1 s−1.

The determination of the function f(Tr) is also given in Poling by Lucas [38],

who suggests a form for f(Tr) as:

37



f(Tr) = [a+ b · T cr − d · exp(e · Tr) + f exp(g · Tr)]F o
PF

o
Q (3.19)

The percent error associated with Lucas’s method are expected to be between 0.5-1.5%

for nonpolar compounds and 2-4% for polar compounds, from experimental values [28].

Table 3.5. Constants for Equations (3.16) and (3.19).

Species H2O H2SO4
Eqn. (3.16) (3.19)

Temp. Range (K) 273.16-1073.15 none
Coefficients

a 6.1837×10−7 0.018
b 6.7779×10−1 0.807
c 8.4723×102 0.618
d -7.3630×104 0.357
e - -0.449
f - 0.340
g - -4.058

The constans a-g are given in Table 3.5, while F o
P and F o

Q are corrections factors. F o
Q is

only for the species He, H2, and D2, while F o
P is dependant on the reduced dipole

moment µdipr , defined to be:

µdipr = 52.46

(
µdip

)2
Pc

T 2
c

(3.20)

where µdip represents the dipole moment and has an approximate value of

µdip1 ≈ 2.725 Debye for sulfuric acid (with unknown accuracy by author) [27]. For the
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given parameter values, we obtained a reduced sulfuric acid dipole moment of

µdip1r ≈ 0.029, which we can then use to obtain a value for the correction F o
P :

F o
P = 1 + 30.55(0.292− Zc)

1.72 (3.21)

The formula for F o
P is exclusively for reduced dipole values in the range of

0.022 ≤ µdipr ≤ 0.075 and Zc is the critical compressibility defind as:

Zc =
PcVc
RTc

(3.22)

For sulfuric acid, the critical compressibility is Zc ≈ 0.1473. We obtained a value for

the correction factor as F o
P ≈ 2.10. Finally, solving Equation (3.17) for η, we obtain a

value for the pure component sulfuric acid gas viscosity as η1v ≈ 1.42× 10−5 Pa s.

3.5.2 Thermal Conductivity. The coefficient of thermal conductivity appears

as the proportionality constant in Fourier’s law of thermal conduction, which relates a

flux of heat to the local temperature gradient. In one dimension:

q = −λdT
dx

, (3.23)

where q is the heat flux density in Wm−2, T is the local temperature in K, and λ is the

coefficient of thermal conductivity in Wm−1K−1.
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Pure component thermal conductivity values of the ambient atmosphere gases

(i.e. CO2 and N2) are extracted from the NIST Chemistry Webbook [26] at the

appropriate temperature and pressure corresponding to z = 50 km. The temperature

dependence of water vapor thermal conductivity is given in Pruppacher et al. [21]. The

formula is given as:

λ2v = (3.78 + 0.020 · T )
(

1

2.39

)
× 10−2 (3.24)

where T is the gas temperature in units of degrees celsius and λ2v has units of

Wm−1K−1.

Vapor phase thermal conductivity for sulfuric acid is found in Poling et al. [28],

through empirical formula using the methods of Chung et al. [39]. The formula has the

form:

λM

ηCv
=

3.75Ψ

Cv/R
. (3.25)

The term on the left hand side is know as the Eucken factor, it relates the thermal

conductivity to viscosity and is dimensionless. The variables λ, η,M,Cv, R represent

the thermal conductivity, viscosity obtained in section 3.5.1, molar mass, isochoric

specific heat, and the universal gas constant respectively. Ψ is a function of

temperature and contains factors which are dependant upon whether the gas is polar or

not. It has the form:

40



Ψ = 1 +
α[0.215 + 0.28288α− 1.061β + 0.26665Z]

[0.6366 + βZ + 1.061αβ]

α =
Cv

R
− 3/2

β =
1

1.32

Z = 2 + 10.5T 2
r (3.26)

The β term has a specific value for each polar compound. Values for β can be found for

a limited number of gases in Chung et al. [39], but are not available for sulfuric acid.

Thus, it is suggested by the authors that for polar compounds without a value for β use

a default value of β = (1.32)−1. The quantity Tr in Z is again the reduced temperature

given in section 3.5.1. To obtain α we use the relation Cv = Cp −R. We obtain

Ψ ≈ 3.32, then solving Equation (3.25) for λ we obtained the thermal conductivity for

sulfuric acid vapor as λ1v ≈ 1.50× 10−2Wm−1K−1. Errors associated with this method

typically lie between 5-7% for nonpolar compounds, and larger for polar compounds

[28].

Temperature dependence of liquid phase water vapor and sulfuric acid thermal

conductivity is given in Daubert at. al. [27]. They are both obtained from a polynomial

expansion of the form:

λ(1,2)ℓ = a+ bT + cT 3 + dT 4. (3.27)
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with T in kelvin and the coefficients are given in Table 3.6. The percent error associated

with Equation (3.27) for water is less than 1%, and for sulfuric acid is less than 3% [27].

Table 3.6. Constants for Equation (3.27).

Species H2O H2SO4
Eqn. (3.27) (3.27)

Temp. Range (K) 273.16-633.15 273.59-371.32
Coefficients

a -4.3200×10−1 0.0142
b 5.7255×10−3 1.0763×10−3

c -8.0780×10−6 -
d 1.8610×10−9 -

3.5.3 Diffusion Coefficient. The diffusion coefficient is a measure of the ability

of either a gas or fluid with a gradient in concentration, to restore an equal spatial

partition between molecules. It becomes present in Fick’s law, which states that the

molecular concentration flux J , in one dimension, is proportional to the negative of the

gradient in molecular concentration. Mathematically, Fick’s law reads:

J = −Ddφ

dx
(3.28)

Where J is the diffusion flux in molm−2 s−1, φ is the concentration in molm−3,

and the proportionality constant D represents the diffusion coefficient in units of

m2 s−1. Values for the diffusion coefficient are obtained through the use of a formula

with empirical relations, based on experimental measurements, and derived from

theoretical solutions to the Boltzmann equation [28]. The diffusion coefficient for a
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binary gas mixtures with components A and B at low pressures, has the formula:

DAB =
0.00143 · T 1.75

P
√
MAB

1[
(Σv)

1/3
A + (Σv)

1/3
B

] . (3.29)

This formula is suggested by Fuller et al. [40]. The variables T, P,MAB, represent the

temperature, pressure, and the harmonic mean of the molecular masses. The term

(Σv)A/B is found for each component by summing atomic diffusion volumes increments,

given in reference [28] and the averaged molecular mass is given by the formula:

MAB =
2

(1/MB) + (1/MB)
(3.30)

The atomic volume increments needed for Equation (3.29) are given in the Table 3.7 for

species pertinent to Venus’ atmosphere.

Table 3.7. Atomic diffusion volumes for species found on Venus.

Atomic Diffusion Volume Increments
H 2.31
O 6.11
S 22.9

Diffusion Volumes of Venus Species (Σv)
CO2 26.9

H2SO4 51.96
H2O 13.1

It is important to note, that the diffusion coefficient’s components (A and B) are

in reference to the vapor to be diffused (component B) into the ambient host gas

(component A). Since Venusian clouds are aqueous sulfuric acid, the vapor phase is
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composed of water as well as sulfuric acid. It is then necessary to compute two diffusion

coefficients: one for water vapor, and another for sulfuric acid vapor. The diffusion of

sulfur trioxide from the dissociation of the vaporous sulfuric acid is ignored for

simplicity.

The ambient gas is taken to be only carbon dioxide since it occupies over 96% of

the atmosphere. The diffusion coefficients for sulfuric acid and water in CO2 are

computed as Dacid ≈ 1.08× 10−5 m2 s−1 and Dwater ≈ 2.79× 10−5 m2 s−1. The average

percent error reported by Poling is approximately 5.4%, when comparing results from

Equation (3.29) to experimental values.

3.6 Mixtures

One of the most important treatments of the thesis is given to mixtures. Since

the clouds of Venus are aqueous sulfuric acid, we have a binary mixture of pure sulfuric

acid and water. The vapor phase is also a combination of acid and water, as well as

sulfur trioxide from the dissociation of acid [31].

As noted earlier, the gas total pressure follows Dalton’s law, is the sum of the

partial pressures pg = pv + pd. By extensions, the pressure of the vapor phase and dry

atmospheric pressure are the sum of their components partial pressure, e.g.

pv = p1 + p2 + p3. The total density of the gaseous phase follows mass conservation and

is the sum of its components, ρg = ρv + ρd. Again, the pure component vapor densities

and ambient densities add to form the vapor and dry ambient mixture densities.

The molecular weight of a mixture, M , can be found, interchangeably, either as a

weighted sum by mole χi fractions, or by a weighted inverse sum by mass fractions wi,
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M =
∑
i

χi ·Mi =

[∑
i

wi
Mi

]−1

. (3.31)

Heat capacity mixtures are obtained by a simple weighted sum of specific heats

by the mixtures component weight fractions.

Cm =
n∑
i=1

wiCi (3.32)

It is an easy exercise to show for a two component mixture of dry gas and vapor (given

by the subscripts d and v respectively), that the heat capacity of the mixture can be

rewritten in the form:

Cm = Cd
1 + xmvr

1 + xmv

r =
Cv
Cd

xmv =
ρv
ρd
. (3.33)

The viscosity of a gas mixture is obtained from Poling et al. [28]. The mixture

viscosity as well as thermal conductivity is found from pure values obtained through

the methods in the previous sections, and are combined using Wilke’s method [41].

ηm =
n∑
i=1

χiηi∑n
j=1 χjϕij

(3.34)
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where

ϕij =

[
1 + (ηi/ηj)

1/2(Mj/Mi)
1/4

]2
[8(1 +Mi/Mj)]

1/2
. (3.35)

Thus, for n pure components, each with viscosity ηi and molar mass Mi, the mixture

viscosity is given above. Wilke’s formula must be applied in order to obtain mixture

viscosities for: (1) the ambient gas (CO2 and N2), (2) the vapor phase (H2SO4 and

H2O), and (3) the gaseous phase, which is a mixture of the ambient and vapor. Values

for the dry, vapor and gaseous phase viscosity mixtures are calculated to be,

ηd ≈ 1.78× 10−5 Pa s, ηv ≈ 1.33× 10−5 Pa s and ηg ≈ 1.76× 10−5 Pa s. The percent

errors reported by Poling for Equation (3.34) are less than 1% for nonpolar gas

mixtures, while errors for polar-polar gas mixtures are not quantitatively discussed [28].

The empirical formula used to combine low pressure gas thermal conductivities

in a gaseous mixture, is analogous to the theoretical relation for mixture viscosity given

by Equation (3.34):

λm =
n∑
i=1

χiλi∑n
j=1 χjAij

. (3.36)

The empirical Equation (3.36) is referred to as the Wassilijewa equation. A suggested

form for Aij is given by Mason and Saxena [42]:
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Aij =
ϵ
[
1 + (λi/λj)

1/2(Mj/Mi)
1/4

]2
[8(1 +Mi/Mj)]

1/2
. (3.37)

In the above equation, λi,Mi represent the thermal conductivity and molar mass of the

ith gas mixture component, while ϵ is a constant near 1. In this thesis I will follow the

author’s lead and use ϵ = 1. From the pure component thermal conductivities given in

the NIST Chemistry Webbook, values for dry air and humid air thermal conductivities

are found to be, λd ≈ 2.20× 10−2 and λg ≈ 2.16× 10−2 Wm−1K−1. Percent errors

between Equation (3.36) and experimental values are greater than 5-8% for polar-polar

and polar-nonpolar gas mixtures. While nonpolar gas mixtures are found to have errors

typically less that 3-4% [28].

The model input parameters, calculated from the equations in this chapter, are

summarized in Table 3.8.
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Table 3.8. Calculated model input parameters.

Parameter Value Units
L 1.66×104 J kg−1

pv 33.46 Pa
pg 107033 Pa
ρv 3.90×10−4 kgm−3

ρg 1.59 kgm−3

ρℓ 1.82×103 kgm−3

Cp
d 38.90 J kg−1K−1

Cp
v 45.21 J kg−1K−1

Cp
g 38.90 J kg−1K−1

Cp
ℓ 60.40 J kg−1K−1

ηd 1.78×10−5 Pa s
ηv 1.33×10−5 Pa s
ηg 1.76×10−5 Pa s
λd 0.030 Wm−1K−1

λv 0.022 Wm−1K−1

λg 0.030 Wm−1K−1

λℓ 0.39 Wm−1K−1

Dacid 1.08×10−5 m2 s−1

Dwater 2.79×10−5 m2 s−1
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Chapter 4: Results

Predictions for the intrinsic acoustic attenuation coefficient and dispersion in

the Venus cloud layer are given in Figures 4.1 and 4.2 respectively. The overall

attenuation spans approximately 5 orders of magnitude across the plotted frequency

range. The curves were generated using parameters at an altitude of z = 50 km (Table

3.1), a cloud density of 80% ρcl, and thermodynamic/transport mixture variables

tabulated in Table 3.8 with mode 3 as the mean particle radius. The dashed vertical

lines represent the characteristic frequencies from Table 2.1, where fD1,2 is the phase

change frequency of species 1, H2SO4, and 2, H2O, and fν is the frequency of

momentum transfers. The locations of the characteristic frequencies are where

attenuation due to the respective mechanisms is dominant. Two inflection points are

distinguished in the attenuation and sound speed curves, at the characteristic

frequencies fD2 and fν . The three characteristic frequencies (fD1, fD2, and fν) indicate

the presence of special relaxation times associated with phase changes and momentum

transfer, as discussed in Section 2.2. Thus, losses due to phase changes dominate for

frequencies < 100 Hz. Above this, absorption due to momentum transfers become

dominant. The overall intrinsic dispersion is very small (~10−2 %), across the given

frequency range. For frequencies between 10−3 − 10−1 Hz, the dispersion is sensitive to

relatively small frequency changes in the phase change dominant region. Above this,

the sound speed is mostly unaffected, hence, the presence of atmospheric clouds has

negligible effects on the intrinsic dispersion.
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Figure 4.1. Frequency dependence of the attenuation coefficient α in the atmosphere
of Venus (z = 50 km)
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Figure 4.2. Frequency dependence of sound speed in the atmosphere of Venus (z =
50 km)
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The dependence of the attenuation and dispersion on the mean liquid particle

radius is given in Figures 4.3 and 4.4. The plots were generated for the same

atmospheric conditions as Figures 4.1 and 4.2. For an increase in droplet radius, the

absorption coefficient decreases, and thus is inversely dependent upon the droplet size.

Additionally, the characteristic frequencies, fD1, fD2 and fν , are inversely proportional

to the square of the droplet radius, and thus the peak attenuation per wavelength

occurs at earlier frequencies for increasing droplet size.

As for the sound speed, a change in mean droplet radius shifts the location of

the dispersion to lower frequencies. The overall change in sound speed remains

approximately the same.

Figure 4.3. Frequency dependence of the attenuation coefficient for different values of
the cloud mean particle radii (modes)
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The influence of cloud particle density on the attenuation coefficient and sound

speed is given in Figures 4.5 and 4.6. The plots were generated for the same
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Figure 4.4. Frequency dependence of the sound speed for different values of the cloud
mean particle radii (modes)
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atmospheric conditions as Figures 4.1 and 4.2, with mean particle size corresponding to

mode 3 (a = 3.65 µm). The cloud density refers to the total mass of the condensates in

a given volume of atmosphere (atmosphere plus droplets). Figure 4.5 gives the

attenuation coefficient for different values of cloud density, which are decreased by

factors of 1/2. As the cloud density is decreased, so too are the number of absorbers

and thus the absorption of sound. However, the characteristic frequency of phase

change fD1 and fD2 is dependent on the amount of liquid m. Hence we see for smaller

cloud densities, and thus smaller m, the characteristic frequency of phase changes also

decreases while the momentum characteristic frequency does not.

The influence of cloud density on the dispersion shifts the dispersion to lower

frequencies with decreasing density. At the same time, the dispersion above 1000 Hz

(due to momentum transfer) is flattened by the upward shifting speed profile.
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Figure 4.5. Frequency dependence of the attenuation coefficient for different cloud
densities
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Figure 4.6. Frequency dependence of the sound speed for different cloud densities
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Chapter 5: Discussion and Conclusion

The effects of clouds on the propagation of low frequency sound has been

investigated on Venus. Predictions for the attenuation coefficient and intrinsic

dispersion, obtained from the complex acoustic wavenumber, have been presented for

low frequencies. The predictions show that the effect of clouds on the absorption and

dispersion is dominated by phase change effects (controlled by diffusion) of the liquid

droplets in the infrasonic range. At higher frequencies, momentum and thermal

transfers are the dominant source of attenuation, but affect the dispersion very little.

The ambient conditions and properties of the cloud layer satisfy the assumptions

made in the model at 50 km altitude. The presence of aqueous sulfuric acid droplets,

H2SO4·H2O, necessitates the use of mixing rules when calculating model input

parameters (i.e. thermodynamic properties, transport properties, etc.). The effects of

varying the mean droplet size show an increase in absorption with a decrease in droplet

size, for a given cloud density. The overall dispersion across the frequency range of

interest changes negligibly (~10−3%) with the mean droplet size. However, the

frequency location where the dispersion occurs, is shifted to lower frequencies with

increasing droplet size.

A maximum cloud density is taken to be ρcl ≈ 4.5× 10−5 kgm−3, which is

without considering cloud dynamics or precipitation. However, since the cloud density

is known to be highly spatially and temporally variable, the attenuation and dispersion

dependence on cloud density is investigated. The absorption is shown to decrease with

cloud density, as well as the frequencies associated with phase change, fD1 and fD2, as
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they are proportional to the liquid content m. The overall change in dispersion with

cloud density is negligible.

5.1 Future Work

The predictions given in this thesis are limited to the low frequency region. In

order to expand the frequency domain, real gas effects can no longer be ignored. Thus,

a natural extension to the model would include the use of a non ideal equation of state

to account for molecular relaxation effects. The work of Petculescu [2] gives generic

predictions for acoustic dispersion and absorption of the ambient Venusian atmosphere

using the van der Waals equation of state. Hence, combining the effects of phase

changes at low frequencies (this work) and real gas effects from Petculescu, would give

a more complete picture of the acoustic profile of Venus’ atmosphere across a much

larger frequency range and in the presence of clouds.

Additionally, the presence of winds within the cloud layer will have to be

analyzed within the context of the model, as they can reach maximum speeds of 100

ms−1 in the upper cloud layer. The plane-wave approximation will also need to be

reviewed. For low frequency waves (f ∼ 10−2 Hz and below), this corresponds to

wavelengths as small as 30 km. At these wavelengths, the cloud properties

(temperature, density, pressure, etc.) change appreciably and will therefore

considerably modify sound propagation.
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Abstract

Generic predictions for the acoustic wavenumber at low frequencies in the

condensational cloud layers of Venus are presented, based on and adapted from the

terrestrial model of Baudoin et al. (J. Acoust. Soc. Am. 130. 1142 (2011)). While the

general thermodynamics of Earth clouds is well understood, that of Venusian clouds is

still a matter of debate. Venus’ clouds are primarily formed of H2O and H2SO4 vapors

and aqueous sulfuric acid droplets, the fluxes of which are not fully constrained due to

the few in situ observations. Inside the clouds, the Navier-Stokes-Fourier equations of

continuum fluid mechanics are used for the gaseous (dry + vapor) and liquid phases of

H2O andH2SO4, combined with equations describing the evaporation/condensation

processes; the gaseous phase is treated as an ideal gas and the liquid droplets are

considered polydisperse. Thermophysical parameters are interpolated at the ambient

conditions pertaining to an altitude of 50 km, a level where balloon platforms (e.g.,

European Space Agency’s EVE) and manned airships (e.g., NASA’s HAVOC) may be

deployed in the future. At low frequencies, the dominant source of absorption is caused

by the evaporation/condensation of the liquid phase. At higher frequencies, absorption

is dominated by momentum transfers between the wave and the ambient gas and liquid

droplets. The intrinsic dispersion is negligible. Sensitivity studies of the attenuation
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coefficient and the sound speed on the cloud physical parameters is performed, namely,

the mean cloud particle size and the cloud density. The attenuation coefficient is

sensitive to changes in both mean cloud particle size and cloud density, while the

intrinsic dispersion changes negligibly.

61



Biographical Sketch

Adam J. Trahan was born on December 31, 1990. He is a native of Abbeville

Louisiana, son to Nancy Duhon, and has spent his life residing in south Louisiana. He

attended the University of Louisiana at Lafayette where he received his Bachelor of

Science degree in the spring of 2016 with a double major in physics and mathematics.

During his undergraduate career, he was accepted into the Naval Research Enterprise

Internship Program (NREIP), where he spent the summer of 2015 performing research

in structural materials at the Naval Surface Warfare Center, MD. He was then accepted

into the Graduate Program at the University of Louisiana at Lafayette, where he

received his Master of Science degree in physics in the Fall of 2018.

62


	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Preface
	Introduction
	Venus, a Brief History of Exploration
	Lower Atmosphere and Cloud Layer

	Model Review
	Introduction to Acoustic Attenuation in Suspensions
	Model Description
	Dispersion Relation
	Model Assumptions

	Determination of Model Parameters
	Ambient Atmospheric Parameters
	Particle Size Distribution Function
	Cloud Density and Volume Fractions
	Thermodynamic Parameters
	Latent heat
	Specific heat

	Transport Properties
	Viscosity
	Thermal Conductivity
	Diffusion Coefficient

	Mixtures

	Results
	Discussion and Conclusion
	Future Work

	Bibliography
	Abstract
	Biographical Sketch

