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Chapter 1: Introduction 

 

 Infrasound: Background and Facts 

Infrasound is the region of the acoustic spectrum covering frequencies < 20 Hz, which is the 

lower limit of the audible range. Infrasonic waves are generated by natural phenomena such 

as auroras, avalanches, earthquakes, meteors and volcanoes, large animals, machinery (e.g. 

wind turbines and high-bypass jet engines), as well as nuclear and conventional explosions. 

These low-frequency compression waves were first observed on a global scale after the 

eruption of the Krakatoa volcano, Indonesia, in 1883. Infrasound records have been 

attributed to events such as Oppau explosion, Germany in 1921, Buncefield oil depot 

explosion, United Kingdom 2005, Chelyabinsk meteor, Russia in 2013 and nuclear tests by 

North Korea in 2013. Compared to audible sounds, infrasound energy losses are much 

smaller owing to their low frequencies. Hence, an infrasonic signal can propagate over large 

distances, reaching altitudes of more than 100 km (Blanc and Ceranna, 2009). That is why 

infrasound can be used in atmospheric studies, prediction of natural disasters, and in 

detecting tests of chemical and nuclear ordnance. The Comprehensive Nuclear-Test-Ban 

Treaty Organization (CTBTO) was established in 1997 to monitor clandestine nuclear 

explosions. This is done through a continuously growing network of infrasound detector 

arrays. Presently, the network consists of 60 infrasound stations of 337 monitoring facilities, 

complemented by the seismic, hydro-acoustic, and radionuclide stations of the International 

Monitoring System (IMS). 

 

 

 Atmospheric Propagation of Infrasound 

The long-range propagation of infrasound in the atmosphere is affected by the vertical sound 

speed profile. Sound speed varies as the square root of temperature and is also subject to the 
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effects of the winds. Under typical conditions, starting at sea level, the speed of sound 

decreases due to decreasing ambient temperature. In the upper stratosphere, absorption of 

solar UV radiation by ozone causes a positive temperature gradient, up to about 45 km. 

Above this height, the temperature decreases again through the mesosphere. In the 

thermosphere, solar X-rays and extreme-UV (XUV) radiation at wavelengths < 170 nm are 

almost completely absorbed, resulting in a steep positive temperature gradient. Also in the 

thermosphere, the energetic radiation causes dissociation and ionization of air molecules, 

leading to the ionospheric layers. Principal propagation channels are the stratospheric duct, 

formed between the ground and the stratopause and the thermospheric duct, formed 

between the ground and about 100 km in the thermosphere. Since the ducts that are formed 

are not rigid, sound leaks out of the duct back to the ground and sound propagating from the 

ground can be diverted back to the surface by the duct boundaries. Arrivals of infrasound 

from the thermosphere have been well documented in literature. An example of such 

measurements is shown in Figure 1. 

 
 
Figure 1: Top: Infrasound signal recorded in French Polynesia on Hao 450 km North-West 
from the source of a nuclear explosion with a yield of a few kilotons. Below: Time-
frequency analysis (Blanc and Ceranna, 2009) 
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Typically, sounds of frequencies above 1 Hz are strongly attenuated over long atmospheric 

paths. The classical absorption coefficient varies as the square of frequency and inversely 

with pressure: therefore, frequency components of a few tenths of Hertz can propagate over 

long distances. This is consistent with data such as that shown in Figure 1. 

 

 

1.2.1 Existing Infrasonic Attenuation Predictive Models 

Sound wave travelling through air (free of fog, moist and dust) is attenuated due to 

atmospheric absorption caused by classical and non-classical losses (Sutherland and Daigle, 

1998). The classical losses are associated with heat conduction, viscosity, and diffusion.  

Non-classical (or molecular) losses are associated with the relaxation of the vibrational and 

rotational degree of freedom of polyatomic molecules.  

 

 

1.2.1.1 The Sutherland and Bass (SB) Model  

The model (Sutherland and Bass, 2004) estimates atmospheric sound absorption up to 160 

km. It is based on Navier-Stokes equations and linear propagation. The model sought to 

improve on the existing American National Standard: ‘Method for calculation of the 

absorption of sound by the atmosphere’. Also, the model includes losses due to rotational 

relaxation. Absorption estimates for altitudes above 90 km are regarded as less accurate due 

to uncertainty in composition of the atmosphere at such high altitudes. 

 

 

1.2.1.2 The Gainville and Blanc-Benon Model 

A nonlinear propagation model (Gainville and Blanc-Benon, 2010) was developed to 

investigate two things: (1) develop an operational 3D nonlinear ray tracing code that 
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computes temporal pressure signatures (waveforms) at receivers of the CTBTO. This was 

done by solving generalized Burgers’ equation (Pierce, 1981) along each eigenray linking the 

source to each receiver. While accounting for nonlinear effects, viscosity absorption and 

molecular vibration mechanisms. (2) non-linear effects relative to linear dissipative effects 

were quantified by the Gol’dberg number (Pierce, 1981). In the study, nonlinear effects were 

observed to dominate linear absorption effects on propagation of the explosion event studied 

(Misty Picture experiment).  

 

 

1.2.1.3 The de Groot-Hedlin Model 

A computational algorithm was developed (de Groot-Hedlin, et al., 2011) to model linear 

infrasound propagation and compare its results to the SB model. It was observed that the SB 

model overestimates the attenuation coefficient when compared to observed values for 

thermospheric returns. The conclusion is drawn that a better understanding of infrasound 

absorption in the thermosphere is needed. 

 

 

 Motivation 

The propagation of acoustic waves in the atmosphere is intimately connected to the state of 

atmosphere (e. g. temperature, pressure, density, winds etc.). Therefore, accurate models are 

required that include all the relevant physical mechanisms affecting the acoustic 

wavenumber, such as scattering, attenuation and dispersion which control infrasonic 

propagation. Problems that have been identified with infrasound propagation are discussed 

below. 

 

 



 

5 
 

In a study of a large bolide that burst above a dense seismic network in the US Pacific 

Northwest on February 19, 2008, estimates of absorption obtained from currently used 

attenuation models (Sutherland and Bass, 2004) predict much greater attenuation for 

thermospheric returns at frequencies greater than 0.1 Hz than was observed (de Groot-

Hedlin, et al., 2011). Two possible reasons were suggested for this observation: 

1. SB model predictions for the attenuation coefficient in the thermosphere are 

inaccurate, 

2. thermospheric returns undergo non-linear propagation at very high altitude. 

Poor understanding of infrasound propagation at thermospheric altitudes has been 

attributed to the rarefied nature of the thermosphere. Ambient pressure ranges from ~10−6 

atm at 86 km to ~10−9 atm at 160 km (compare to 1 atm at sea level), while Mean free path, 

𝐿, ranges from 10 𝑚𝑚 𝑡𝑜 53 𝑚 in the lower thermosphere. The transition between a 

continuum and non-continuum regimes can be expressed in terms of the acoustic Knudsen 

number defined as the ratio between the mean free path of the air molecules and the 

acoustic wavelength (𝐾𝑛 = 𝐿 λ⁄ ). In the physical acoustics literature, the same ratio is often 

expressed via the frequency/pressure (f/p) ratio, based on the kinetic theoretical 

dependence of pressure on the inverse mean free path. For Kn < 0.01, the fluid is regarded 

as a continuum, hence, continuum mechanics i.e. Navier-Stokes approximation is most 

suited for characterizing the fluid dynamics. However, for Kn > 0.01, non-continuum 

mechanics (e.g. Burnett, super-Burnett, 13-moment approximation etc.) is considered 

appropriate. 

 

 

The thermosphere is located within the ionosphere. Hence, it contains charged species-

electrons and positive ions. It is therefore expected that these charged species should have 

some influence on the propagation of acoustic waves. This effect of the ionosphere on 
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infrasound propagation has not been considered in existing absorption models (Sutherland 

and Bass, 2004; Gainville and Blanc-Benon, 2010; de Groot Hedlin, et al., 2011). In this 

study, a mechanism is suggested based on the following premise: the acoustic wave front 

incident from the neutral upper mesosphere encounters “streams” of charged particles-

electrons and ions traveling along paths defined by existing magnetic and electric fields. 

Consequently, there will be a collisional exchange of energy between the neutral particles 

and the charge carriers. This exchange affects the dynamics of the neutral-charged mixture 

(a partially ionized plasma or PIP): the charged “streams” are perturbed by the incident 

acoustic wave motion and in turn, the infrasonic wavefront will lose some coherence. The 

former imposes fluctuations in the electron and ion current densities, as well as electric and 

magnetic fields. The latter effect embodies the net loss of energy, whose “imprint” is carried, 

upon downward refraction at the thermospheric inversion, to the ground detector. 

In this work, the non-continuum fluid mechanics is applied to the problems of absorption 

and dispersion of infrasound in the lower thermosphere (approximately 85 to 160 km). A 

hypothesis of charged species within the lower thermosphere having some effect on the 

absorption and dispersion of infrasound is also tested in this work by incorporating the 

effects of electric and magnetic forces into the predictive framework to be developed. 

 

   

In this work, only sources of infrasound on (or close to the) the ground are considered in 

order to avoid the need to include nonlinear steepening or shocking. Examples of ground-

based infrasound sources of interest are avalanches, earthquakes, explosions, and strong 

storms. The rationale for this choice is as follows: as the wave advances into the 

progressively thinner layers, the particle displacements in the wavefront may increase owing 

to fewer collisions to the point where shocks may appear. For surface sources, steepening 

and/or shocking are likely to occur and persist over a few kilometers from the source. In the 
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comparatively thicker troposphere, one can assume that the higher frequency components 

are fast attenuated. The assumption is made that: by the time a wave reaches the 

thermosphere, the acoustic pressure fluctuations are smaller than the local equilibrium 

pressure. Therefore, one could neglect nonlinear effects.  Nevertheless, this assumption may 

need to be revisited in future studies, especially for extremely strong low-elevation sources 

(e.g. airbursts like the Chelyabinsk and Tunguska events). 

 

 

 Continuum and Non-continuum Mechanics  

Dynamical fluid parameters such as pressure, density, velocity, and temperature are 

obtained by solving the flow equations describing the mass continuity, conservation of 

momentum and energy, combined with the equation of state. These equations must be 

supplemented with constitutive relations expressing the transport of stresses and heat via 

the stress tensor and heat flux. The flow and transport equations are obtained as 

approximate solutions of Boltzmann Transport Equation (BTE) developed by Ludwig 

Boltzmann in 1872, within the context of non-equilibrium statistical mechanics (Mason, 

1965). The first approximation yields the inviscid Euler equations which are appropriate for 

a lossless medium and therefore of no interest in this work. The second approximation yields 

the Navier-Stokes equations, which can accurately predict thermo-viscous flows in 

continuous media. In the Navier-Stokes approximation, the viscous stress tensor and heat 

flux are independent.  The third and fourth approximations yield the Burnett and super-

Burnett equations (Mason, 1965), respectively, in which the stress tensor and heat flux are 

coupled. 
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The fundamental characteristics of acoustic wave motion-phase speed (or sound speed) and 

attenuation coefficient enter the real and imaginary parts of the wave number respectively. 

Assuming that the molecules’ internal and translational degrees of freedom are in thermal 

equilibrium, sound propagation in air is effectively non-dispersive (frequency-independent 

phase speed) while the attenuation coefficient of air varies with the square of the frequency. 

When molecular relaxation times are finite, slight dispersion will occur. In this work, a 

theoretical model is developed to calculate the acoustic wavenumber in the lower 

thermosphere, relying on ambient data (e.g. pressure, temperature, composition, mean free 

paths) and thermophysical parameters (e.g. specific heat capacity, viscosity, thermal 

conductivity) obtained from atmospheric measurements and NIST databases. The model 

uses an algorithm that distinguishes between continuum and non-continuum regimes based 

on the local 𝐾𝑛. 

 

  

 Brief Overview of Thesis Contents  

An introduction to research topic has been presented in this chapter. In chapter two, in 

order to simplify the research problem, first, a neutral thermosphere is assumed. A 

framework to study dispersion and attenuation of infrasound is then developed. The results 

obtained based on the continuum and the non-continuum mechanics are compared.  In 

chapter three, the effects of charged thermosphere are considered within the approximation 

of a PIP via equations of a single-fluid MHD. Also in chapter three, the direct physical 

method to obtain the attenuation coefficient of acoustic waves is employed. This is done via 

the Energy Dissipation Corollary (EDC) (Pierce, 1981), which is based on the energy balance 

equation expressed in conservative form. Chapter four contains conclusions reached based 

on results of this study and recommendations for direction of future work. 

 



 

Chapter 2: Modeling Dispersion and Absorption for a Neutral Lower 
Thermosphere 

 

Better predictions are needed for acoustic attenuation and dispersion in Earth's lower 

thermosphere. The motivation for this study is that, in the tenuous environment of the lower 

thermosphere, 𝐾𝑛 can become large enough to preclude treating the atmosphere as a 

continuum. Therefore, the Navier-Stokes (NS) equations are likely to yield erroneous 

results; one must resort instead to non-continuum fluid mechanics. The latter is made 

possible through the BTE. The Chapman-Enskog expansion of the BTE to first order in 𝐾𝑛 

yields the NS equations, and to second order the Burnett (BU) equations. The progression 

can go on to account for higher-order departures from equilibrium (e.g. 13-moment). 

 

 

 The NS Stress Tensor and Heat Flux 

To obtain the equations describing the motion of a viscous fluid, it is necessary to include 

terms due to viscosity (internal friction) in the equation of motion of an ideal fluid. The NS 

stress tensor is defined as (Landau and Lifshitz, 1959):  

𝜎𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇 (
𝜕𝑣𝑖
𝜕𝑥𝑗

+
𝜕𝑣𝑗

𝜕𝑥𝑖
−
2

3
𝛿𝑖𝑗
𝜕𝑣𝑙
𝜕𝑥𝑙
) + 𝜉𝛿𝑖𝑗

𝜕𝑣𝑙
𝜕𝑥𝑙

 
2.1 

In tensor notation equation 2.1 can be written as follows: 

𝜎 = −𝑝�⃡� + 𝜇 [∇�⃗� + (∇�⃗�)𝑇 −
2

3
�⃡�∇ ∙ �⃗�] + 𝜉�⃡�∇ ∙ �⃗� 

2.2 

In the NS framework, the heat flux is simply the Fourier law of heat conduction (Mason, 

1965) shown below: 

�⃗� = −𝜅∇T 2.3 

In the NS approximation, the stress tensor and heat flux are independent. 
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 The BU Stress Tensor and Heat Flux 

The third order solutions to BTE yields the BU stress tensor and heat flux (Mason, 1965).  

𝜎 = −𝑝�⃡� + 𝜇 [(2 −
2

3
�⃡�) (∇ ∙ �⃗� + 𝜖3

𝜇

𝑝0𝜌
∇2𝑝 −

3

5
𝜖2

𝜅

𝑇0𝜌𝑐𝑣
∇2𝑇)] 

2.4 

�⃗� = −𝜅∇T −
𝜌0
5

𝜅

𝜌𝑐𝑣
(3𝜖1

𝜅

𝜌𝑐𝑣
− 4𝜖2

𝜇

𝜌
) ∇2�⃗� 

2.5 

In the non-continuum mechanics, the stress tensor and heat flux are no longer independent. 

The two quantities are coupled. In the BU approximation, the stress tensor depends on the 

divergence of the pressure gradient force and the divergence of the heat flux. The stress 

tensor becomes dependent on the thermal properties of the fluid not just on the divergence 

of the particle velocity as is the case in the NS approximation. Similarly, the BU heat flux 

becomes dependent on the stress tensor. 

 

 

 Fluid Transport Equations 

At this stage, the thermosphere is assumed to be neutral, hence unaffected by electric and 

magnetic fields. For simplicity, the effects of gravity are assumed negligible. The equations 

that govern fluid dynamics are those of mass continuity, conservation of momentum, 

conservation of energy, and the equation of state. These transport equations are then 

supplemented by constitutive relations involving the stress tensor and heat flux. 

𝜕𝑡𝜌 + ∇ ∙ (𝜌�⃗�) = 0 2.6a 

 𝜌𝐷𝑡�⃗� = ∇ ∙ 𝜎 2.7a 

𝜌𝐷𝑡𝑈 − 𝜎 (∇ ∙ �⃗�) + ∇ ∙ �⃗� = 0 2.8a 

𝜌 = 𝜌(𝑝, 𝑇) 2.9a 
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2.3.1 The Linear Acoustics Approximation 

In the linear acoustics regime, fluctuations are assumed to be much less than ambient 

values. In order to simplify this model, the effect of winds is not considered. The set of fluid 

transport equations is solved for the wave number at each altitude. The gradient of ambient 

density is considered insignificant (consistent with neglecting gravity). Linearizing equations 

2.6a to 2.9a i.e. keeping terms of order one (O-1) in fluctuating quantities yields the 

following equations: 

𝜕𝑡𝜌1 + 𝜌0∇ ∙ �⃗�1 = 0 2.6b 

 𝜌0𝜕𝑡�⃗�1 = ∇ ∙ 𝜎1 2.7b 

𝜌0𝜕𝑡𝑈1 + 𝑝0∇ ∙ �⃗�1 + ∇ ∙ �⃗�1 = 0 2.8b 

𝜌1 = (
𝜕𝜌

𝜕𝑝
)
𝑇

𝛿𝑝 + (
𝜕𝜌

𝜕𝑇
)
𝑝
𝛿𝑇 = 𝜌0𝛽𝑇𝑝1 − 𝜌0 ∝𝑝 𝑇1 

2.9b 

The internal energy in equation 2.8b can be expanded as follows: 

𝑈 = 𝑈(𝑇, 𝜌) 

𝑈1 = (
𝜕𝑈

𝜕𝑇
)
𝜌
𝛿𝑇 + (

𝜕𝑈

𝜕𝜌
)
𝑇

𝛿𝜌 = 𝑐𝑣𝑇1 + (
𝜕𝑈

𝜕𝜌
)
𝑇

𝛿𝜌 

 

2.10 

Applying the thermodynamic identity (Condon and Odishaw, 1967) with 𝑝 ≈ 𝑝0 𝑎𝑛𝑑 𝜌 ≈ 𝜌0 

𝑐𝑝 − 𝑐𝑣 =∝𝑝 [
𝑝

𝜌
− 𝜌 (

𝜕𝑈

𝜕𝜌
)
𝑇

] ⟹ (
𝜕𝑈

𝜕𝜌
)
𝑇

=
1

𝜌0
(
𝑝0
𝜌0
−
𝑐𝑝 − 𝑐𝑣
∝𝑝

) 

𝑈1 = 𝑐𝑣𝑇1 +
1

𝜌0
(
𝑝0
𝜌0
−
𝑐𝑝 − 𝑐𝑣
∝𝑝

)𝜌1 

𝜌0𝑐𝑣𝜕𝑡𝑇1 + (
𝑝0
𝜌0
−
𝑐𝑝 − 𝑐𝑣
∝𝑝

)𝜕𝑡𝜌1 + 𝑝0∇ ∙ �⃗�1 + ∇ ∙ �⃗�1 = 0 

 

 

 

 

2.11 

Rearranging equation 2.11 and substituting −𝜌0∇ ∙ �⃗�1 for 𝜕𝑡𝜌1 (2.6b) the following 

conservation of energy equation is obtained: 

𝜌0𝑐𝑣𝜕𝑡𝑇1 − (
𝑝0
𝜌0
−
𝑐𝑝 − 𝑐𝑣
∝𝑝

)𝜌0∇ ∙ �⃗�1 + 𝑝0∇ ∙ �⃗�1 + ∇ ∙ �⃗�1 = 0 
2.12 
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which reduces to: 

𝜌0𝑐𝑣𝜕𝑡𝑇1 + 𝜌0 (
𝑐𝑝 − 𝑐𝑣
∝𝑝

)∇ ∙ �⃗�1 + ∇ ∙ �⃗�1 = 0 
2.8b′ 

 

 

2.3.2 Divergence of the Perturbed NS Stress Tensor and Heat Flux 

Sound propagation in a viscous fluid is accompanied by fluctuations in pressure, 

temperature, and density. These, in turn, induce oscillations in both the stress tensor and 

heat flux. The divergence of NS stress tensor and heat flux are derived below. For air, 𝜉 = 0. 

By perturbing the stress tensor to first order in pressure and particle velocity, one obtains: 

𝜎1 = −𝑝1�⃡� + 𝜇 [∇�⃗�1 + (∇�⃗�1)
𝑇 −

2

3
�⃡�∇ ∙ �⃗�1] 

∇ ∙ 𝜎1 = −∇𝑝1�⃡� + 𝜇 [∇ ∙ ∇�⃗�1 + ∇ ∙ (∇�⃗�1)
𝑇 −

2

3
�⃡�∇(∇ ∙ �⃗�1)] 

∇ ∙ ∇�⃗�1 ≡ ∇
2�⃗�1 

∇ ∙ (∇�⃗�1)
𝑇 = ∇�⃗�1 ∙ ∇= ∇(�⃗�1 ∙ ∇) = ∇(∇ ∙ �⃗�1) = ∇

2�⃗�1 + ∇ × ∇ × �⃗�1 

Assuming no turbulence i.e. ∇ × ∇ × �⃗�1 = 0 

∇ ∙ 𝜎1 = −∇𝑝1�⃡� + 𝜇 [2∇
2�⃗�1 −

2

3
�⃡�∇2�⃗�1] 

∇ ∙ 𝜎1 = −∇𝑝1 + 𝜇 (2 −
2

3
�⃡�) ∇2�⃗�1 = −𝑖�⃗⃗⃗�𝑝1 − 𝜇 (2 −

2

3
�⃡�)𝐾2�⃗�1 

 

 

 

 

 

 

 

 

2.13 

Similarly, the divergence of the fluctuation in heat flux can be expressed, in terms of the 

first-order temperature perturbation, as  

∇ ∙ �⃗�1 = −𝜅∇
2T1 = 𝜅K

2T1 2.14 

Although solutions to above set of equations can be carried out for various wave field 

geometries (e.g. spherical, cylindrical, guided waves etc.), the essential features of free-space 

propagation are retained for plane waves (Mason, 1965). Assuming plane wave solutions to 
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fluctuating parameters implies inserting 2.13 and 2.14 into 2.7b and 2.8b respectively, and 

using the plane wave approximation, the system of equations becomes: 

−𝑖𝜔𝜌1 + 𝑖𝜌0�⃗⃗⃗� ∙ �⃗�1 = 0 2.6c 

 −𝑖𝜔𝜌0�⃗�1 = −𝑖�⃗⃗⃗�𝑝1 − 𝜇(2 −
2
3⁄ �⃡�)𝐾2�⃗�1 2.7c 

−𝑖𝜔𝜌0𝑐𝑣𝑇1 + 𝑖𝜌0 (
𝑐𝑝 − 𝑐𝑣
∝𝑝

) �⃗⃗⃗� ∙ �⃗�1 + 𝜅𝐾
2T1 = 0 

2.8c 

𝜌1 − 𝜌0𝛽𝑇𝑝1 + 𝜌0𝛼𝑝𝑇1 = 0 2.9c 

 

 

2.3.3 Obtaining the Dispersion Equation 

The resulting system of equation is homogeneous in fluctuating quantities and can be 

written in matrix form as follows: 

(

 

−𝑖𝜔   
0
  

𝑖𝜌0𝐾 

𝑖𝜔𝜌0 − 4 3⁄ 𝜇𝐾2
         

0

−𝑖�⃗⃗⃗�
                   

0
0

            
0
1
   
𝑖𝜌0(𝑐𝑝 − 𝑐𝑣 ∝𝑝⁄ )𝐾

0
       

0
−𝜌0𝛽𝑇

𝜅𝐾2 − 𝑖𝜔𝜌0𝑐𝑣
𝜌0𝛼𝑝 )

 (

𝜌1
𝑣1
𝑝1
𝑇1

) = 0 

2.15 

For sound waves �⃗⃗⃗� ∙ 𝑣1 = 𝐾𝑣1 and assuming propagation in one direction i.e. �⃡� = 1. The 

condition for consistency is the vanishing of the determinant.  

−𝑖𝜔 𝑖𝜌0𝐾 0 0 

0 
𝑖𝜔𝜌0 −

4

3
𝜇𝐾2 

−𝑖𝐾 0 

0 
𝑖𝜌0 (

𝑐𝑝 − 𝑐𝑣
𝛼𝑝

)𝐾 
0 𝜅𝐾2 − 𝑖𝜔𝜌0𝑐𝑣 

1 0 −𝜌0𝛽𝑇 𝜌0𝛼𝑝 

 

 

 

2.16 

 

The determinant of the matrix yields a characteristic equation of order-four (O-4) in 𝐾. This 

represents the dispersion equation, �̃� = �̃�(𝜔). The phase speed (speed of sound, 𝑐), and the 
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attenuation coefficient (∝), are obtained, respectively from the real and imaginary parts of 

the dispersion equation: �̃� = 𝜔 𝑐⁄ + 𝑖 ∝. 

 

 

2.3.4 NS Results for a Neutral Thermosphere 

To evaluate the NS model, values for ambient parameters are needed. The next section 

explains how these values were obtained. 

 

 

2.3.4.1 Ambient Data for the Thermosphere 

Ambient data for pressure, density, temperature and mean free path are extracted from the 

US Standard Atmosphere 1976 (US 76). US 76 is a document compiled by NOAA, NASA, and 

USAF. It contains data for the mesosphere and lower thermosphere obtained via rocket and 

satellite over a complete solar cycle. The following ambient data were extracted from US 76: 

mean free path (Figure 2), pressure, density, temperature (Figure 3), and the number 

densities of nitrogen, oxygen, and air. At this stage of the model, air is considered as a 

mixture of its major constituents i.e. nitrogen, 𝑁2(≈ 78%) and oxygen, 𝑂2(≈ 21%). Up to 

about 90 km, the molecular weight of air is fairly constant at about 28% 𝑘𝑔/𝑘𝑚𝑜𝑙. Even 

though molecular weight of air reduces to about 23% 𝑘𝑔/𝑘𝑚𝑜𝑙 at 160 km, the ratio of 𝑁2 to 

𝑂2 can be assumed constant.  Thermophysical parameters (𝜌𝑜, 𝑐𝑝, 𝑐𝑣 , 𝜇 and 𝜅) for 𝑁2 and 𝑂2 

were obtained from NIST Chemistry Webbook (http://webbook.nist.gov/chemistry/fluid/).  

Number densities for the two constituents and air obtained from US 76 were used to derive 

number ratio/concentration of each constituents. The ratios were then multiplied by the 

total ambient pressure of air to obtain partial pressures for  𝑁2 and 𝑂2. The partial pressures 

of  𝑁2 and 𝑂2 along with temperature at every 1 km between 85 to 160 km were used to query 

the NIST Chemistry Webbook for the thermophysical parameters of interest. The values for 
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each parameter were then combined in ratio of 0.78 of 𝑁2 and 0.21 of 𝑂2 to form an air 

mixture of 𝑁2 and 𝑂2. The lower-thermospheric profiles of 𝜇 and 𝜅 for 𝑁2 - 𝑂2 mixture is 

shown in Figure 4.    

 

Figure 2: Thermospheric profile of MFP 

 

 

 

Figure 3: Thermospheric profiles of ambient quantities 
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Figure 4: Thermospheric profiles for 𝑁2 − 𝑂2 mixture 

 

 

2.3.4.2 Obtaining the Dispersion Relation 

Equation 2.16 is solved using MATLAB for 𝐾(𝜔) at every 1 km between 85 and 160 km. Thus 

the dispersion equation is obtained at each altitude. The sound speed and attenuation are 

obtained from the real and imaginary parts of �̃�(𝜔) as shown below: 

𝑐(𝜔) =
𝜔

𝑅𝑒[�̃�(𝜔)]
 2.17a 

∝ (𝜔) = 𝐼𝑚[�̃�(𝜔)] 2.17b 

The model is evaluated at the following frequencies: 0.01, 0.1, 0.5, 1, 5 and 10 Hz. At every 

altitude four solutions are obtained for �̃�(𝜔). The physical solutions are the ones having 

both the real and imaginary part of �̃�(𝜔) positive. Of these, one solution, whose real and 

imaginary parts are nearly the same, represents an evanescent (or non-propagating) mode. 

The other physical solution, with the imaginary part smaller than the real part, is the 

acoustic (or propagating) mode. 
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Alongside sound speed and attenuation profiles, 𝐾𝑛 profile is shown. On the 𝐾𝑛 profile, the 

regions within which NS (𝐾𝑛 < 0.01) and BU (𝐾𝑛 > 0.01) frameworks are each valid are 

indicated.  

 

Figure 5: NS model results for 0.01 Hz 

 

 

Figure 6: Results of NS model for 0.1 Hz 
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Figure 7: Results of NS model for neutral thermosphere for 0.5 Hz 

 

 

Figure 8: NS model results for 1 Hz 
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Figure 9: NS model results for 5 Hz 

 

 

Figure 10: NS model results for 10 Hz 
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2.3.4.3 Discussion of NS Results 

According to theory developed by Stokes and Kirchhoff, the classical attenuation is given by 

the relation (Landau and Lifshitz, 1959): 

∝𝐶𝑙≅
𝜔2

2𝜌0𝑐0
3 [
4

3
𝜇 + (𝛾 − 1)

𝜅

𝑐𝑝
] 

2.18 

A linear relationship is observed between ∝𝐶𝑙 and 𝜇, similarly between ∝𝐶𝑙 and 𝜅. An 

expected trend with frequency is observed in ∝𝐶𝑙, with maximum attenuation values been on 

the order of 10−7(0.01 𝐻𝑧), 10−5 (0.1 𝐻𝑧), 𝑎𝑛𝑑10−3(0.5 𝑎𝑛𝑑 1 𝐻𝑧).  For a particular altitude, 

as 𝑓 increases, 𝜆 decreases. This decrease in 𝜆 results in an increase in 𝐾𝑛 at that particular 

altitude. The increase in 𝐾𝑛 at each altitude as 𝑓 increase, reduces the height of the region of 

the thermosphere within which NS approach is most appropriate. The following height 

boundaries for which NS ‘treatment’ is most appropriate were noted and shown 

(represented with dashed line) on Figures 5 to 10. The boundaries are at: 

160 𝑘𝑚 (0.1 𝐻𝑧), 130 𝑘𝑚 (0.5 𝐻𝑧), 122 𝑘𝑚 (1 𝐻𝑧), 109 𝑘𝑚 (5 𝐻𝑧), 𝑎𝑛𝑑  105 𝑘𝑚 (10 𝐻𝑧). 

Beyond these listed boundaries, the treatment of the thermosphere as a continuum inherent 

within the NS approach is attributable to the overestimation of infrasound absorption in the 

lower thermosphere. The appropriate treatment for such regions is non-continuum 

mechanics inherent within the BU framework, which is described in the following section. 

 

  

 Burnett Equation Results for a Neutral Thermosphere 

The equations for continuity of mass and state remain unchanged. The Burnett stress tensor 

is inserted in conservation of momentum equation and Burnett heat flux into the 

conservation of energy equation. 
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2.4.1 Divergence of the Perturbed BU Stress Tensor and Heat Flux 

𝛿𝜎⃡⃗⃗⃗⃗ = 𝜎1 = −𝛿𝑝�⃡� + 𝜇 [(2 −
2

3
�⃡�) (∇ ∙ 𝛿𝑣⃗⃗⃗⃗⃗ + 𝜖3

𝜇

𝑝0
𝛿 (
∇2𝑝

𝜌
) −

3

5
𝜖2

𝜅

𝑇0𝑐𝑣
𝛿 (
∇2𝑇

𝜌
))] 

2.19 

Applying the quotient differentiation rule 

𝛿 (
∇2𝑝

𝜌
) =

𝜌𝛿(∇2𝑝) − ∇2𝑝𝛿𝜌

𝜌2
=
𝜌0∇

2𝑝1 + 𝜌1∇
2𝑝1 − ∇

2𝑝0𝜌1 − ∇
2𝑝1𝜌1

𝜌0
2 + 2𝜌0𝜌1 + 𝜌1

2
 

2.20 

𝜌1 ≪ 𝜌0⟹ 𝜌1
2 ≈ 0 and linearizing (keeping terms of order-1 in perturbed quantities) 

𝛿 (
∇2𝑝

𝜌
) =

∇2𝑝1
𝜌0

−
𝜌1
𝜌0
2
∇2𝑝0 ≈

∇2𝑝1
𝜌0

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑙𝑦 𝛿 (
∇2𝑇

𝜌
) ≈

∇2𝑇1
𝜌0

 
2.21 

Assuming ambient pressure and temperature does not vary appreciably, 

𝜎1 = −𝑝1 + 𝜇 [(2 −
2

3
�⃡�) (∇ ∙ �⃗�1 + 𝜖3

𝜇

𝑝0

∇2𝑝1
𝜌0

−
3

5
𝜖2

𝜅

𝑇0𝑐𝑣

∇2𝑇1
𝜌0
)] 

∇ ∙ 𝜎1 = −∇𝑝1 + 𝜇 [(2 −
2

3
�⃡�) (∇2𝑣1 + 𝜖3

𝜇

𝑝0

∇3𝑝1
𝜌0

−
3

5
𝜖2

𝜅

𝑇0𝑐𝑣

∇3𝑇1
𝜌0
)] 

 

 

2.22 

Next, the divergence of perturbed heat flux is evaluated. 

�⃗� = −𝜅∇T −
𝜌0
5

𝜅

𝜌𝑐𝑣
(3𝜖1

𝜅

𝜌𝑐𝑣
− 4𝜖2

𝜇

𝜌
) ∇2�⃗� 

�⃗�1 = −𝜅∇T1 −
𝜌0
5

𝜅

𝑐𝑣
(3𝜖1

𝜅

𝑐𝑣
− 4𝜖2𝜇)𝛿 (

∇2�⃗�

𝜌2
) 

𝛿 (
∇2�⃗�

𝜌2
) =

𝜌2𝛿(∇2�⃗�) − ∇2�⃗�𝛿(𝜌2)

(𝜌2)2
=
(𝜌0

2 + 2𝜌0𝜌1 + 𝜌1
2)∇2𝑣1 − (∇

2𝑣0 + ∇
2𝑣1)2𝜌𝜌1

(𝜌0
2 + 2𝜌0𝜌1 + 𝜌1

2)2
 

2.23 

𝛿 (
∇2�⃗�

𝜌2
) ≈

∇2𝑣1
𝜌0
3

 

�⃗�1 = −𝜅∇T1 −
𝜅

5𝑐𝑣
(3𝜖1

𝜅

𝑐𝑣
− 4𝜖2𝜇)

∇2𝑣1
𝜌0
2

 

∇ ∙ �⃗�1 = −𝜅∇
2T1 −

𝜅

5𝑐𝑣
(3𝜖1

𝜅

𝑐𝑣
− 4𝜖2𝜇)

∇3𝑣1
𝜌0
2

 

 

 

 

 

2.24 

In the plane-wave approximation, Equations 2.22 and 2.24 are substituted into 2.7c and 2.8c 

respectively. The following set of equations is obtained: 
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−𝑖𝜔𝜌1 + 𝑖𝜌0�⃗⃗⃗� ∙ �⃗�1 = 0 2.6c 

−𝑖𝜔𝜌0𝑣1 = −𝑖K𝑝1 + 𝜇
4

3
(−𝐾2𝑣1 − 𝑖𝜖3

𝜇

𝑝0

K3𝑝1
𝜌0

+ 𝑖𝜖2
3

5

𝜅

𝑇0𝑐𝑣

K3𝑇1
𝜌0

) 
2.7d 

−𝑖𝜔𝜌0𝑐𝑣𝑇1 + 𝑖𝜌0 (
𝑐𝑝 − 𝑐𝑣
∝𝑝

) �⃗⃗⃗� ∙ �⃗�1 + 𝜅K
2T1 + i

𝜅

5𝑐𝑣
(3𝜖1

𝜅

𝑐𝑣
− 4𝜖2𝜇)

K3𝑣1
𝜌0
2
= 0 

2.8d 

𝜌1 − 𝜌0𝛽𝑇𝑝1 + 𝜌0𝛼𝑝𝑇1 = 0 2.9c 

 

 

2.4.2 Obtaining the Dispersion Equation 

The following matrix determinant is obtained from equations 2.6c, 2.7d, 2.8d and 2.9c: 

−𝑖𝜔 𝑖𝜌0𝐾 0 0 

0 
𝑖𝜔𝜌0 −

4

3
𝜇𝐾2 −𝑖 (𝐾 +

𝜇𝜖3𝐾
3

𝜌0𝑝0
) 

3𝑖𝜖2𝜅𝐾
3

5𝜌0𝑇0𝑐𝑣
 

0 
𝑖 [𝜌0 (

𝑐𝑝 − 𝑐𝑣

𝛼𝑝
)𝐾 + (

3𝜖1𝜅
2

5𝜌0
2𝑐𝑣
2 −

4𝜖2𝜇𝜅

5𝜌0
2𝑐𝑣
)𝐾3] 

0 𝜅𝐾2 − 𝑖𝜔𝜌0𝑐𝑣 

1 0 −𝜌0𝛽𝑇 𝜌0𝛼𝑝 

 

 

 

2.25 

Equating matrix determinant 2.25 to zero yields solutions for 𝐾. 

 

 

2.4.2.1 Obtaining the Dispersion Relation 

Equation 2.25 is solved using MATLAB for 𝐾(𝜔) at every 1 km between 85 and 160 km. A 

complex solution is obtained at each altitude. The sound speed and attenuation are obtained 

from the real and imaginary parts of �̃�(𝜔) as described in NS model. At every altitude six (6) 

solutions are obtained for �̃�(𝜔). The physical solution is one with both real and imaginary 

parts of �̃�(𝜔) positive. Eliminating evanescent modes (commensurate real and imaginary 

parts), one is left with the acoustic mode (real part larger then imaginary part, as described 
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in the previous section). The model is evaluated at 0.5 Hz. The resulting sound speed and 

attenuation profile are shown in Figure 11. Alongside the sound speed and attenuation 

profiles, the 𝐾𝑛 profile is shown. On the 𝐾𝑛 profile, the regions within which NS (𝐾𝑛 < 0.01) 

and BU (𝐾𝑛 > 0.01) frameworks are assumed to hold are indicated. In region where 𝐾𝑛 <

0.01, the BU model results converge to NS model results as expected. In the region within 

which 𝐾𝑛 > 0.01, a deviation from NS results in sound speed and attenuation profiles is 

observed.  A significant reduction of about 40% in predicted attenuation is observed in the 

BU profile compared to the NS model at 0.5 Hz. However about 9% increase in predicted 

sound speed profile is observed in the BU profile compared to the NS model profile. 

 

Figure 11: Comparison of Results of BU model to NS model   
for neutral thermosphere for f = 0.5 Hz 

 

 

 Rotational Relaxation  

Thus far, classical losses have been accounted for in the NS and BU frameworks. This was 

done by incorporating dissipative effects of viscosity and thermal conductivity. Next, the 

dissipative effect of molecular relaxation in polyatomic gas components of air is considered. 

Molecular attenuation are energy losses due to internal degrees of freedom (DOF) of a 
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molecule, when molecules collide, there is exchange of momentum which results in loss or 

gain of translational energy of the colliding molecules. However, there is a probability of 

some collisions resulting in activation of internal DOF. Internal DOF represent rotation of 

atoms about an axis of the molecule, vibration of atoms about their equilibrium position, 

and electronic excitation. All the internal DOF are quantized. The amount of energy to 

activate the rotational DOF is the smallest, that needed for vibrational DOF is larger, while 

that needed to excite the electronic DOF is the highest. Once a DOF is activated via 

collisions, the amount of time it takes for the DOF to deactivate, such that the molecule 

returns to its equilibrium state is known as relaxation time. External/translational DOF 

relax quasi-instantaneously (via very few collisions) whereas, internal DOF have longer 

relaxation times (via more collisions). Relaxation processes makes the specific heat 

capacities of the gas time (or frequency) dependent. This time dependence can be obtained 

from the energy relaxation equation. Following the partitioning of energy into translational, 

rotational and vibrational, the specific heat capacity of a gas can also be partitioned 

similarly. The contribution of vibrational relaxation of 𝑁2 is not considered in this work 

since it was shown by Bass and Sutherland to contribute negligibly to the heat capacity at 

lower-thermospheric conditions. At thermospheric altitudes, classical plus rotational 

relaxation losses reaching maximum values within 80 to 160 km (Sutherland and Bass, 

2004). 

�̃�𝑣
𝑒𝑓𝑓

= 𝑐𝑣
∞ + 𝑐𝑣

𝑟𝑜𝑡Γ 2.26 

𝑐𝑣
𝑟𝑜𝑡(𝑑𝑖𝑎𝑡𝑜𝑚𝑖𝑐) ≡ 𝑅0 =

𝑅

𝑀
 

2.27 

𝑐𝑣
∞ ≡ 𝑐𝑣

0 − 𝑐𝑣
𝑟𝑜𝑡 2.28 

�̃�𝑣
𝑒𝑓𝑓

= 𝑐𝑣
0 + 𝑅0(Γ − 1) 2.29 

where,  

Γ =
1

1 − 𝑖𝜔𝜏
 

2.30 
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Relaxation times, 𝜏 for, 𝑁2 at thermospheric temperatures were extracted from literature, 

(Riabov, 2000) see Figure 12 below for extracted profile.    

 

 

Figure 12: Interpolated (Riabov, 2000) rotational relaxation time for nitrogen gas 
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2.5.1 Evaluation of Results for the NS and BU Models with Rotational 
Relaxation 

 
Figure 13 below shows profiles obtained for 𝐾𝑛, sound speed and attenuation for 𝑓 = 0.5 𝐻𝑧. 

 

Figure 13: NS-BU results with 𝑁2 rotation relaxation  

With the addition of losses due to rotational relaxation of 𝑁2, a significant increase is noted 

the attenuation profiles for both the NS and BU profiles as expected. Maximum increase of 

about 67% is observed at 160 km for NS and ~138% for BU. Also, as expected a decrease in 

sound speed is observed both for the NS and BU profiles. 
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Chapter 3: Sound Dispersion and Absorption in a Charged Thermosphere 

 

 Composition of the Thermosphere 

The ionosphere extends from the mesopause (≈ 85 𝑘𝑚) through the thermosphere, into the 

exosphere (> 600 𝑘𝑚). The lower thermosphere overlaps with the 𝐸 and 𝐹1 ionospheric 

layers, where charged species coexist with neutrals forming a Partially Ionized Plasma (PIP). 

The charged species (electrons and positive ions) are produced by two main mechanisms: (1) 

interaction of solar UV radiation with neutrals and (2) impact of energetic cosmic ray 

particles. Processes producing charged constituents are reviewed below (Rees, 1989). 

 

 

3.1.1 Photoionization 

This is the principal mechanism by which ions of major thermospheric species are produced. 

Photoionization reactions and their respective ionization thresholds are as follows: 

𝑁2 + ℎ𝜈 (> 15.58 𝑒𝑉) → 𝑁2
+ + 𝑒− 3.1 

𝑂2 + ℎ𝜈 (> 12.08 𝑒𝑉) → 𝑂2
+ + 𝑒− 3.2 

𝑂 + ℎ𝜈 (> 13.61 𝑒𝑉) → 𝑂+ + 𝑒− 3.3 
 

 

3.1.2 Dissociative Ionization 

This reaction produces atomic ions and atomic nitrogen and oxygen and requires more 

energetic solar photons. 

𝑂2 + ℎ𝜈 (> 18.73 𝑒𝑉) → 𝑂
+ + 𝑂 + 𝑒− 3.4 

𝑁2 + ℎ𝜈 (24.32 𝑒𝑉) → 𝑁
+ +𝑁 + 𝑒− 3.5 
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 Acoustic Wave Motion in the Charged Thermosphere 

Any attempt to model the dispersion and attenuation of sound waves in the thermosphere 

should account for the presence of charged species in the thermosphere. Conceptually, the 

mechanism can be summarized as follows: an acoustic wave front incident from the neutral 

mesosphere encounters “streams” of charged particles (electrons and ions) traveling along 

paths defined by existing magnetic and electric fields. Consequently, there will be a 

collisional exchange of energy between the neutral particles and the charge carriers. This 

exchange affects the dynamics of the PIP: the charged “streams” are perturbed by the 

incident acoustic wave motion and, in turn, the acoustic wavefront will lose some coherence. 

The former effect imposes fluctuations in the electron and ion current densities, as well as 

electric and magnetic fields. The latter effect embodies the net loss of energy, whose 

“imprint” is carried, upon downward refraction at the thermospheric inversion, to the 

ground detector.  

 

 

A rigorous plasma dynamics model will include separate treatment of neutral-neutral, 

charged-charged, and charged-neutral interactions. The dynamics of neutral species has 

been studied in the previous chapter. The dynamics of the electrons and ions can each be 

described by a set of equations similar to those of neutrals, with addition of the Lorentz 

force, work done by electro-magnetic forces, Maxwell’s equations, and Ohm’s law. This 

approach results in three set of equations for a multi-species plasma which is difficult to 

solve under most circumstances (Schunk and Nagy, 2009). For this project, however, an 

effective-fluid approximation is used, within the framework of single-fluid 

magnetohydrodynamics (1F-MHD). The next sections contain the detailed description of the 

MHD modeling framework leading to the plane-wave linear dispersion equation. 
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3.2.1 Single-fluid MHD 

The simplest way to approach this problem is to think of the PIP as a single conducting fluid 

which is electrically neutral (Gartenhaus, 1964). To treat a gas mixture as a single 

conducting fluid, it is necessary to add the contributions of the individual species and obtain 

both total and average parameters for the gas mixture (Schunk and Nagy, 2009). These 

quantities are mass density, charge density, drift velocity, and current density. 

𝜌 =∑𝑛𝛼𝑚𝛼
𝛼

= 𝑛𝑒𝑚𝑒 + 𝑛𝑖𝑚𝑖 + 𝑛𝑛𝑚𝑛 3.8 

𝜌𝑐 =∑𝑛𝛼𝑒𝛼  

𝛼

= 𝑛𝑒𝑒𝑠 + 𝑛𝑖𝑒𝑖 
3.9 

�⃗� =∑𝑛𝛼𝑚𝛼�⃗�𝛼
𝛼

∑𝑛𝛼𝑚𝛼
𝛼

⁄ =
𝑛𝑒𝑚𝑒�⃗�𝑒 + 𝑛𝑖𝑚𝑖�⃗�𝑖 + 𝑛𝑛𝑚𝑛�⃗�𝑛

𝜌
 

3.10 

𝐽 =∑𝑛𝛼𝑒𝛼�⃗�𝛼 

𝛼

= 𝑒(𝑛𝑖�⃗�𝑖 − 𝑛𝑒�⃗�𝑒) 
3.11 

Single-fluid mass continuity, and conservation of momentum and energy are derived simply 

by summing individual equations over all species present in the plasma. To these dynamical 

equations, we add the equation of state, Maxwell’s equations, and the generalized Ohm’s 

law. 1F-MHD equations are listed below: 

𝜕𝑡𝜌 + ∇ ∙ (𝜌�⃗�) = 0 3.12 

𝜌𝐷𝑡�⃗� = ∇ ∙ 𝜎 + 𝜌�⃗� + 𝜌𝑐 �⃗⃗� + 𝐽 × �⃗⃗� 3.13 

𝜌𝛾

𝛾 − 1
𝐷𝑡 (

𝑝

𝜌𝛾
) = −𝜎′: ∇�⃗� − ∇ ∙ �⃗� + 𝐽 ∙ (�⃗⃗� + �⃗� × �⃗⃗�) − 𝜌𝑐 �⃗⃗� ∙ �⃗� 

3.14 

𝑝 = 𝜌𝑅𝑇 3.15 

∇ ∙ �⃗⃗� =
𝜌𝑐
휀0

 3.16 

∇ ∙ �⃗⃗� = 0 3.17 

∇ × �⃗⃗� = −𝜕𝑡�⃗⃗� 3.18 
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∇ × �⃗⃗� = 𝜇0(𝐽 + 휀0𝜕𝑡�⃗⃗�) 3.19 

𝜕𝑡𝐽 + ∇ ∙ (�⃗�𝐽 + 𝐽�⃗�) + 𝑒∇ ∙ (
�⃗⃗�𝑖
∗

𝑚𝑖
−
�⃗⃗�𝑒
∗

𝑚𝑒
) −

𝑛𝑒𝑒
2

𝑚𝑒
(�⃗⃗� + �⃗�𝑒 × �⃗⃗�) −

𝑛𝑖𝑒
2

𝑚𝑖
(�⃗⃗� + �⃗�𝑖 × �⃗⃗�)

=
𝑒

𝑚𝑖

𝛿�⃗⃗⃗�𝑖
𝛿𝑡

−
𝑒

𝑚𝑒

𝛿�⃗⃗⃗�𝑒
𝛿𝑡

 

 

3.20 

Equation 3.20 contains �⃗�𝑒 and �⃗�𝑖 instead of the one fluid velocity. In the next section a 

generalized Ohm’s law is derived for the single fluid. 

 

 

3.2.2 Derivation of a Generalized Ohm's Law 

Considering that 𝑚𝑒 ≪ 𝑚𝑖, then the single fluid density is reduced to 

𝜌 ≈ 𝑛𝑖𝑚𝑖 + 𝑛𝑛𝑚𝑛 3.21 

Similarly, the single fluid velocity reduces to 

�⃗� ≈
𝑛𝑖𝑚𝑖�⃗�𝑖 + 𝑛𝑛𝑚𝑛�⃗�𝑛

𝜌
≈ 𝑥𝑖�⃗�𝑖 + 𝑥𝑛�⃗�𝑛 

�⃗�𝑖 ≈
�⃗� − 𝑥𝑛�⃗�𝑛
𝑥𝑖

 

 

 

3.22 

where 𝑥𝑖, 𝑥𝑛 are concentrations/ density ratios of ions and neutrals to the total fluid. 

𝑥𝑖,𝑛 =
𝜌𝑖,𝑛
𝜌

 

𝑥𝑖 + 𝑥𝑛 ≈ 1⟹ 1 +
𝑥𝑛
 𝑥𝑖
≈
1

 𝑥𝑖
 

 

 

3.23 

Substituting 3.23 into 3.22 

�⃗�𝑖 ≈
�⃗� − 𝑥𝑛�⃗�𝑛
𝑥𝑖

≈ (1 +
𝑥𝑛
 𝑥𝑖
) �⃗� −

𝑥𝑛
 𝑥𝑖
�⃗�𝑛 

  3.24 

Assuming single ionization only, 𝑛𝑒 = 𝑛𝑖 and substituting into 3.11, the following expression 

is found for �⃗�𝑒 
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�⃗�𝑒 = �⃗�𝑖 −
𝐽

𝑛𝑖𝑒
 

3.25 

Since 𝑚𝑒 ≪ 𝑚𝑖, then  

�⃗⃗�𝑖
∗

𝑚𝑖
≪
�⃗⃗�𝑒
∗

𝑚𝑒
 

3.26 

Similarly 

𝑛𝑖𝑒
2

𝑚𝑖
≪
𝑛𝑒𝑒

2

𝑚𝑒
 

3.27 

Hence 3.20 reduces to  

𝜕𝑡𝐽 + ∇ ∙ (�⃗�𝐽 + 𝐽�⃗�) − (
𝑒

𝑚𝑒
) ∇ ∙ �⃗⃗�𝑒

∗ −
𝑛𝑒𝑒

2

𝑚𝑒
[�⃗⃗� + (�⃗�𝑖 −

𝐽

𝑛𝑖𝑒
) × �⃗⃗�] =

𝑒

𝑚𝑖

𝛿�⃗⃗⃗�𝑖
𝛿𝑡

−
𝑒

𝑚𝑒

𝛿�⃗⃗⃗�𝑒
𝛿𝑡

 
3.28 

The collision terms time are defined as follow (Schunk and Nagy, 2009): 

𝑒

𝑚𝑒

𝛿�⃗⃗⃗�𝑒
𝛿𝑡

= 𝑒𝑛𝑒𝜈𝑒𝑖(�⃗�𝑖 − �⃗�𝑒) = 𝜈𝑒𝑖𝐽 
3.29 

𝑒

𝑚𝑖

𝛿�⃗⃗⃗�𝑖
𝛿𝑡

=
𝑒

𝑚𝑖
𝑛𝑖𝑚𝑖𝜈𝑖𝑒(�⃗�𝑒 − �⃗�𝑖) =

𝑒

𝑚𝑖
𝑛𝑒𝑚𝑒𝜈𝑒𝑖(�⃗�𝑒 − �⃗�𝑖) = −(

𝑚𝑒
𝑚𝑖
) 𝜈𝑒𝑖𝐽 

3.30 

Here 𝜈𝑖𝑒 and 𝜈𝑒𝑖 are momentum transfer collision frequencies for ion-electron and electron-

ion collisions. The frequencies are not symmetric but instead satisfy the relation 3.31 

(Schunk and Nagy, 2009) which has been used to obtain 3.30. 

𝑛𝑖𝑚𝑖𝜈𝑖𝑒 = 𝑛𝑒𝑚𝑒𝜈𝑒𝑖 3.31 

 Since 𝑚𝑒 ≪ 𝑚𝑖, then (
𝑚𝑒

𝑚𝑖⁄ ) → 0. Hence, 𝑒 𝑚𝑖⁄
𝛿�⃗⃗⃗�𝑖

𝛿𝑡
⁄  (3.30) i.e. first term on the right-

hand size of 3.28 can be safely neglected. 

Multiplying equation 3.28 above by −
𝑚𝑒

𝑛𝑒𝑒
2⁄ , the following equation is obtained: 

−
𝑚𝑒
𝑛𝑒𝑒

2 [𝜕𝑡𝐽 + ∇ ∙ (�⃗�𝐽 + 𝐽�⃗�)] +
1

𝑛𝑒𝑒
∇ ∙ �⃗⃗�𝑒

∗ + �⃗⃗� + �⃗�𝑖 × �⃗⃗� −
1

𝑛𝑖𝑒
𝐽 × �⃗⃗� =

𝑚𝑒𝜈𝑒𝑖
𝑛𝑒𝑒

2
𝐽 

3.32 

𝜎𝑒 =
𝑛𝑒𝑒

2

𝑚𝑒𝜈𝑒𝑖
 

3.33 
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where 𝜎𝑒 in the above expression is the parallel conductivity of a fully ionized plasma. The 

time scale of variation of 𝐽 is assumed large i.e. on the order of one period of the infrasound 

wave, such that 𝜕𝑡𝐽 ⟶ 0. Linearizing the above equation and keeping terms of order 1 in 

fluctuations causes the divergence ∇ ∙ (�⃗�𝐽 + 𝐽�⃗�) = 0. Hence, 3.32 becomes: 

𝐽

𝜎𝑒
=
1

𝑛𝑒𝑒
(∇ ∙ �⃗⃗�𝑒

∗ − 𝐽 × �⃗⃗�) + �⃗⃗� + �⃗�𝑖 × �⃗⃗� 
3.34 

Substituting 3.24 for �⃗�𝑖 in 3.34, one obtains: 

𝐽

𝜎𝑒
=
1

𝑛𝑒𝑒
(∇ ∙ �⃗⃗�𝑒

∗ − 𝐽 × �⃗⃗�) + �⃗⃗� + (1 +
𝑥𝑛
 𝑥𝑖
) �⃗� × �⃗⃗� −

𝑥𝑛
 𝑥𝑖
�⃗�𝑛 × �⃗⃗� 

3.35 

𝐽 × �⃗⃗� term contains the Hall effect contribution: 

𝐽 × �⃗⃗�

𝑛𝑒𝑒
≡
𝐽

𝜎𝑒

𝑒𝐵

𝑚𝑒𝜈𝑒𝑖
(𝑗̂ × �̂�) =

𝐽

𝜎𝑒

𝜔𝑐
𝑒

𝜈𝑒𝑖
(𝑗̂ × �̂�) 

3.36 

where use has been made of 3.33, 

𝜔𝑐
𝑒 =

𝑒�⃗⃗�

𝑚𝑒
 

3.37 

When the electron-ion collision frequency (𝜈𝑒𝑖) is much greater than the electron cyclotron 

frequency (𝜔𝑐
𝑒), the Hall effect is negligible by comparison to the conductivity contribution, 

𝐽

𝜎𝑒
. Within the lower-thermospheric region of 85 to 160 km, 𝜈𝑒𝑖~10 − 10

2 𝑠−1and 𝜔𝑐
𝑒 ≈

107 𝑠−1. Even when the collision frequency is not large, it is often possible to neglect both 

the Hall current and pressure tensor terms (Schunk and Nagy, 2009). Under these 

conditions, 3.35 reduces to: 

𝐽

𝜎𝑒
= �⃗⃗� + (1 +

𝑥𝑛
 𝑥𝑖
) �⃗� × �⃗⃗� −

𝑥𝑛
 𝑥𝑖
�⃗�𝑛 × �⃗⃗� 

3.38 

Equation 3.38 is Ohm’s law for a two-fluid system (consisting of neutrals and ions). Based 

on the premise that the masses and temperatures of neutrals and ions are comparable 
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(Figure 15), their velocities can also be assumed to be close. Hence, the two-fluid Ohm’s law 

(3.38) can be further simplified to the generalized one fluid Ohm’s law 

𝐽

𝜎𝑒
= �⃗⃗� + �⃗� × �⃗⃗�  

3.39 

It is worth noting here that the latest assumption �⃗�𝑛 ≈ �⃗� is a bit forced, even within the 

simplifying context of 1F-MHD (as opposed to the full-blown plasma dynamics treatment). 

The two velocities of neutrals, �⃗�𝑛 and ions, �⃗�𝑖 are equivalent to neutral winds and ion drifts, 

respectively, which may differ noticeably on diurnal and/or seasonal time scales. A two-fluid 

MHD is likely to be more accurate: the neutral-to-ion concentration ratio is then related to 

the degree of ionization (assuming atoms are singly ionized). Nevertheless, the theoretical 

framework developed here to predict infrasound dispersion and absorption in a PIP 

environment is meant to set the stage for future refinement, guided by new measurements. 

 

Figure 14: Temperature profiles for electrons, ions and neutrals 
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3.2.2.1 Conductivity for a PIP 

𝜎𝑒 was defined earlier as the conductivity of a FIP. In this section, 𝜎𝑒 for a PIP is derived. 

Based on Cowling’s three fluid theory, the parallel conductivity for a PIP permeated by 

magnetic field has been developed (Wang, 1993) as follows: 

𝜎𝑃𝐼𝑃 = 𝜎𝐹𝐼𝑃𝑝−1 3.40 

where, 𝑝 is a function of plasma parameters and it is defined as follows (Wang, 1993): 

𝑝 = 1 +

𝑚𝑖
𝜈𝑒𝑖⁄

𝑚𝑖
𝜈𝑒𝑛⁄ +

2𝑚𝑒
𝜈𝑖𝑛
⁄

 
3.41 

 Multiply and divide 3.41 by 
𝜈𝑒𝑛

𝑚𝑖⁄  

𝑝 = 1 +

𝜈𝑒𝑛
𝜈𝑒𝑖⁄

1 +
2𝑚𝑒

𝑚𝑖⁄ 𝜈𝑒𝑛
𝜈𝑖𝑛⁄

 
3.42 

Applying the relation (Wang, 1993): 

𝑚𝑒
𝑚𝑖

𝜈𝑒𝑛
𝜈𝑖𝑛
~√
𝑚𝑒
𝑚𝑖

 
3.43 

Since, 𝑚𝑒 ≪ 𝑚𝑖, then √
𝑚𝑒

𝑚𝑖⁄ → 0.  Such that 3.42 then becomes: 

𝑝 = 1 +
𝜈𝑒𝑛

𝜈𝑒𝑖⁄  3.44 

Next, the magnitude of the ratio 
𝜈𝑒𝑛

𝜈𝑒𝑖⁄  is examined within the lower thermosphere. Over 

the range: 85 − 160 𝑘𝑚, 𝜈𝑒𝑛 ranges from 105 − 103 𝑠−1, while 𝜈𝑒𝑖 ranges from 101 − 102 𝑠−1. 

Hence, the ratio: 
𝜈𝑒𝑛

𝜈𝑒𝑖⁄  varies from 104 − 10. However, conductivity values used in 

evaluating the model developed for a charged thermosphere were extracted from 

atmospheric conductivity profile documented in literature, therefore the factor 𝑝 is not 

considered. 
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 Simplified MHD Equations 

At the outset, it is assumed that fluctuations in the electric and magnetic fields are solely the 

result of the acoustic perturbation. Hence, the variation of E is over the acoustic wave 

periods, which are relatively long for infrasound. Hence the displacement current in 

Ampere’s law (3.19) can be neglected. Since the plasma is neutral 𝜌𝑐 �⃗⃗� = 0, similarly 𝜌𝑐 �⃗⃗� ∙

�⃗� 𝑎𝑛𝑑 ∇ ∙ �⃗⃗� = 0. The set of equations characterizing the PIP becomes: 

𝜕𝑡𝜌 + ∇ ∙ (𝜌�⃗�) = 0 3.12a 

𝜌𝐷𝑡�⃗� = ∇ ∙ 𝜎 + 𝜌�⃗� + 𝐽 × �⃗⃗� 3.13a 

𝜌𝛾

𝛾 − 1
𝐷𝑡 (

𝑝

𝜌𝛾
) = −𝜎′: ∇�⃗� − ∇ ∙ �⃗� + 𝐽 ∙ (�⃗⃗� + �⃗� × �⃗⃗�) 

3.14a 

𝑝 = 𝜌𝑅𝑇 3.15a 

∇ ∙ �⃗⃗� = 0 3.16a 

∇ ∙ �⃗⃗� = 0 3.17a 

∇ × �⃗⃗� = −𝜕𝑡�⃗⃗� 3.18a 

∇ × �⃗⃗� = 𝜇0𝐽 3.19a 

𝐽 = 𝜎𝑒[�⃗⃗� + (�⃗� × �⃗⃗�)] 3.20a 

The atmosphere is considered to be windless (�⃗�0 = 0). Also, for simplicity of the argument, 

only a geomagnetic ambient field is assumed to be present; no ambient electric field, hence 

no ambient current density (�⃗⃗�0, 𝐽0 = 0). Assuming no variation in ambient density with time,

𝜕𝑡𝜌0 = 0. Applying hydrostatic equilibrium ∇0𝑝0 = −𝜌0�⃗� . The thermosphere can be divided 

into sub-layers, each with an average temperature. Hence, within each layer ∇0𝑇0 = 0. 

Linearizing equations 3.12a to 3.20a: 

𝜕𝑡𝜌1 + �⃗�1 ∙ ∇0𝜌0 + 𝜌0∇ ∙ �⃗�1 = 0 3.12b 

𝜌0𝜕𝑡�⃗�1 = −∇𝑝1 +
4

3
𝜇∇(∇ ∙ �⃗�1) + 𝜌1�⃗� + 𝐽1 × �⃗⃗�0 

3.13b 
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1

𝛾 − 1
[𝜕𝑡𝑝1 + �⃗�1 ∙ ∇0𝑝0 + 𝛾𝑝0(∇ ∙ �⃗�1)] = 𝜅∇

2T1 
3.14b 

𝑝0 = 𝜌0𝑅𝑇0, 𝑐0
2 = 𝛾

𝑝0
𝜌0
  𝑎𝑛𝑑 𝑝1 = 𝜌1𝑅𝑇1, 𝑐0

2 =
𝑝1
𝜌1

 3.15b 

∇ ∙ �⃗⃗�1 = 0 3.16b 

∇ ∙ �⃗⃗�0 = 0 𝑎𝑛𝑑 ∇ ∙ �⃗⃗�1 = 0 3.17b 

∇ × �⃗⃗�1 = −𝜕𝑡�⃗⃗�1 3.18b 

∇ × �⃗⃗�0 + ∇ × �⃗⃗�1 = 𝜇0𝐽1 3.19b 

𝐽1 = 𝜎𝑒(�⃗⃗�1 + �⃗�1 × �⃗⃗�0) 3.20b 

 

 

3.3.1 Hydrostatic Equilibrium 

Expressions are sought for terms: �⃗�1 ∙ ∇0𝜌0 in 3.12b and �⃗�1 ∙ ∇0𝑝0 in 3.14b. 

∇0𝑝0 = −𝜌0�⃗� 3.45 

Atmospheric pressure varies exponentially with altitude as follows:  

𝑝0(𝑧) = 𝑝0(0)𝑒𝑥𝑝
−𝑧 𝐻0⁄  3.46 

where 𝐻0 is scale height defined as: 

 𝐻0 =
𝑅𝑇0
𝑔

 
 

�⃗�1 ∙ ∇0𝑝0 = −𝑣1𝑧
𝑝0
𝐻0

 3.47 

�⃗�1 ∙ ∇0𝜌0 in 3.12b is expressed as follows, applying the equation of state 3.15b 

�⃗�1 ∙ ∇0𝜌0 =
�⃗�1 ∙ ∇0𝑝0
𝑅𝑇0

 
3.48 

The variation of g with height i.e. 𝑔 = 𝑔(𝑧) is assumed insignificant, at least within each 

isothermal layer. Assuming plane wave propagation: 

−𝑖𝜔𝜌1 +
�⃗�1 ∙ ∇0𝑝0
𝑅𝑇0

+ 𝑖𝜌0 K⃗⃗⃗ ∙ �⃗�1 = 0 
3.12c 
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−𝑖𝜔𝜌0�⃗�1 = −𝑖K⃗⃗⃗𝑝1 −
4

3
𝜇K⃗⃗⃗(K⃗⃗⃗ ∙ �⃗�1) + 𝜌1�⃗� + 𝐽1 × �⃗⃗�0 

3.13c 

−𝑖𝜔𝑝1−𝑣1𝑧
𝑝0
𝐻0
+ 𝑖𝛾𝑝0(K⃗⃗⃗ ∙ �⃗�1) = −𝜅(𝛾 − 1)𝐾

2T1 3.14c 

𝑝0 = 𝜌0𝑅𝑇0, 𝑐𝑠
2 = 𝛾

𝑝0
𝜌0
  𝑎𝑛𝑑 𝑝1 = 𝜌1𝑅𝑇1,     𝑐𝑠

2 =
𝑝1
𝜌1
  3.15c 

𝑖K⃗⃗⃗ ∙ �⃗⃗�1 = 0 3.16c 

𝑖K⃗⃗⃗ ∙ �⃗⃗�1 = 0 3.17c 

K⃗⃗⃗ × �⃗⃗�1 = 𝜔�⃗⃗�1⟹ �⃗⃗�1 =
K⃗⃗⃗ × �⃗⃗�1
𝜔

 
3.18c 

𝑖K⃗⃗⃗ × �⃗⃗�1 ≈ 𝜇0𝐽1 3.19c 

𝐽1 = 𝜎𝑒(�⃗⃗�1 + �⃗�1 × �⃗⃗�0) 3.20c 

The objective of the next sections is to derive characteristic equation, which depends on 

vectors �⃗�, �⃗⃗⃗�𝑎𝑛𝑑 �⃗⃗�0.  

 

 

3.3.2 Evaluating �⃗�𝟏 × �⃗⃗⃗�𝟎 Term in the Momentum Equation 

In this section, an expression is sought for 𝐽1 × �⃗⃗�0 as a function of �⃗�, �⃗⃗⃗�𝑎𝑛𝑑 �⃗⃗�0. First �⃗⃗�1 and �⃗⃗�1 

are expressed as functions of �⃗�, �⃗⃗⃗�𝑎𝑛𝑑 �⃗⃗�0.  

Substituting 3.18c for �⃗⃗�1 in 3.19c and substituting 3.20c for 𝐽1in 3.19c. 3.19c then becomes: 

𝑖K⃗⃗⃗ × (K⃗⃗⃗ × �⃗⃗�1)

𝜔
≈ 𝜇0𝜎𝑒(�⃗⃗�1 + �⃗�1 × �⃗⃗�0) 

3.49 

Expanding the LHS of 3.49 via a vector calculus identity and then applying 3.16c, 

𝑖K⃗⃗⃗ × (K⃗⃗⃗ × �⃗⃗�1)

𝜔
=
𝑖

𝜔
[(K⃗⃗⃗ ∙ �⃗⃗�1)K⃗⃗⃗ − 𝐾

2�⃗⃗�1] =
−𝑖𝐾2�⃗⃗�1
𝜔

 
3.50 

Replacing the LHS of 3.49 with 3.50 and collecting like terms, the following expression is 

found: 
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�⃗⃗�1 ≈
−𝜇0𝜎𝑒(�⃗�1 × �⃗⃗�0)

(𝜇0𝜎𝑒 +
𝑖𝐾2

𝜔
)
 ≡
𝑖𝜔𝜇0𝜎𝑒(�⃗�1 × �⃗⃗�0)

(𝐾2 − 𝑖𝜔𝜇0𝜎𝑒)
  

     3.51 

A similar expression is now sought for �⃗⃗�1, substituting 3.51 into 3.18c 

�⃗⃗�1 =
K⃗⃗⃗ × �⃗⃗�1
𝜔

≈
𝑖𝜇0𝜎𝑒[K⃗⃗⃗ × (�⃗�1 × �⃗⃗�0)]

(𝐾2 − 𝑖𝜔𝜇0𝜎𝑒)
 

 

Applying a vector calculus identity to K⃗⃗⃗ × (�⃗�1 × �⃗⃗�0): 

K⃗⃗⃗ × (�⃗�1 × �⃗⃗�0) = (K⃗⃗⃗ ∙ �⃗⃗�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�⃗⃗�0  

�⃗⃗�1 becomes 

�⃗⃗�1 = �̃�𝐵(𝜎𝑒 , 𝜔)[(K⃗⃗⃗ ∙ �⃗⃗�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�⃗⃗�0]    3.52 

�̃�𝐵(𝜎𝑒 , 𝜔) is a complex coefficient which characterizes electric conductivity effects 

�̃�𝐵(𝜎𝑒 , 𝜔) =
𝑖𝜇0𝜎𝑒

(𝐾2 − 𝑖𝜔𝜇0𝜎𝑒)
=

𝑖

(
𝐾2

𝜇0𝜎𝑒
− 𝑖𝜔)

  
3.53a 

From 3.19c (applying vector calculus identity), the following expression for  𝐽1 × �⃗⃗�0 is found 

𝐽1 × �⃗⃗�0 ≈
 𝑖(K⃗⃗⃗ × �⃗⃗�1) × �⃗⃗�0

𝜇0
=
1

𝑖𝜇0
�⃗⃗�0 × (K⃗⃗⃗ × �⃗⃗�1) =

1

𝑖𝜇0
[(�⃗⃗�0 ∙ �⃗⃗�1)K⃗⃗⃗ − (�⃗⃗�0 ∙ K⃗⃗⃗)�⃗⃗�1] 

3.54a 

Substituting 3.52 for  �⃗⃗�1 in 3.54a 

(�⃗⃗�0 ∙ �⃗⃗�1)K⃗⃗⃗ = �̃�𝐵[(K⃗⃗⃗ ∙ �⃗⃗�0)(�⃗⃗�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)𝐵0
2] 3.55a 

(�⃗⃗�0 ∙ K⃗⃗⃗)�⃗⃗�1 = �̃�𝐵(�⃗⃗�0 ∙ K⃗⃗⃗)[(K⃗⃗⃗ ∙ �⃗⃗�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�⃗⃗�0] 3.56a 

Substituting �⃗⃗�0 = 𝐵0�̂�0 

(�⃗⃗�0 ∙ �⃗⃗�1)K⃗⃗⃗ = �̃�𝐵𝐵0
2[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]K⃗⃗⃗ 3.55b 

(�⃗⃗�0 ∙ K⃗⃗⃗)�⃗⃗�1 = �̃�𝐵𝐵0
2(�̂�0 ∙ K⃗⃗⃗)[(K⃗⃗⃗ ∙ �̂�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�̂�0] 3.56b 

Substituting 3.55b and 3.56b into 3.54a, the following expression is obtained: 

𝐽1 × �⃗⃗�0 ≈
�̃�𝐵𝐵0

2

𝑖𝜇0
{[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]K⃗⃗⃗ − (�̂�0 ∙ K⃗⃗⃗)[(K⃗⃗⃗ ∙ �̂�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�̂�0]} 

3.54b 
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𝐽1 × �⃗⃗�0 ≈
�̃�𝐵𝐵0

2

𝑖𝜇0
{[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]K⃗⃗⃗ − (K⃗⃗⃗ ∙ �̂�0)

2
�⃗�1 + (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�0} 

3.54c 

Inserting 𝑣𝐴, the following expression is obtained. 

𝐽1 × �⃗⃗�0 ≈ −𝑖�̃�𝐵𝜌0𝑣𝐴
2 {[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]K⃗⃗⃗ − (K⃗⃗⃗ ∙ �̂�0)

2
�⃗�1 + (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�0} 

3.57 

 

 

3.3.3 Deriving Expression for 𝒑𝟏 in Term of  �⃗⃗⃗�, �⃗⃗⃗⃗�𝒂𝒏𝒅 �⃗⃗⃗�𝟎 

An expression for 𝑇1as a function of 𝑝1 (Landau and Lifshitz, 1959) is: 

𝑇1 = (
𝛽𝑝𝑇0

𝜌0𝑐𝑝
)𝑝1  

  3.58 

Substituting 3.58 for 𝑇1in 3.14c and applying 3.15c 

𝑖𝜔𝑝1 = −𝑣1𝑧
𝑝0
𝐻0
+ 𝑖𝜌0𝑐0

2(K⃗⃗⃗ ∙ �⃗�1) + 𝜅(𝛾 − 1)𝐾
2 (
𝛽𝑝𝑇0

𝜌0𝑐𝑝
)𝑝1 

3.59 

Collecting like terms and applying hydrostatic equilibrium, 

[𝑖𝜔 − 𝜅(𝛾 − 1)𝐾2 (
𝛽𝑝𝑇0

𝜌0𝑐𝑝
)] 𝑝1 = −𝜌0𝑔𝑣1𝑧 + 𝑖𝜌0𝑐0

2(K⃗⃗⃗ ∙ �⃗�1) 
 

𝑝1 =
−𝜌0𝑔𝑣1𝑧 + 𝑖𝜌0𝑐0

2(K⃗⃗⃗ ∙ �⃗�1)

[𝑖𝜔 − 𝜅(𝛾 − 1)𝐾2 (
𝛽𝑝𝑇0
𝜌0𝑐𝑝

)]

=
𝜌0
𝜔

𝑖𝑔𝑣1𝑧 + 𝑐0
2(K⃗⃗⃗ ∙ �⃗�1)

1 + 𝑖 [
𝜅(𝛾 − 1)𝐾2

𝜔
(
𝛽𝑝𝑇0
𝜌0𝑐𝑝

)]

 
 

𝑝1 =
𝜌0
𝜔

𝑖𝑔𝑣1𝑧 + 𝑐0
2(K⃗⃗⃗ ∙ �⃗�1)

�̃�𝑝(𝜅, 𝜔)
 

3.60 

�̃�𝑝(𝜅, 𝜔) is a complex coefficient which quantifies thermal effects: 

�̃�𝑝(𝜅, 𝜔) = 1 + 𝑖 [
𝜅(𝛾 − 1)𝐾2

𝜔
(
𝛽𝑝𝑇0
𝜌0𝑐𝑝

)] 
3.61a 
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3.3.4 Obtaining the Characteristic Equation 

Substituting �⃗� = −𝑔�̂� and 3.15c into 3.13c, the following equation is obtained: 

𝑖𝜔𝜌0�⃗�1 − (𝑖K⃗⃗⃗ +
𝑔�̂�

𝑐0
2)𝑝1 −

4

3
𝜇K⃗⃗⃗(K⃗⃗⃗ ∙ �⃗�1) + 𝐽1 × �⃗⃗�0 = 0 

3.62 

 

Next, derived expressions for 𝐽1 × �⃗⃗�0 (3.57) and 𝑝1 (3.60) are substituted into 3.62 

𝑖𝜔𝜌0 �⃗⃗⃗�𝟏 − (𝑖�⃗⃗⃗� +
𝑔�̂�

𝑐0
2)
𝜌0
𝜔

𝑖𝑔𝑣1𝑧 + 𝑐0
2(K⃗⃗⃗ ∙ �⃗�1)

�̃�𝑝
−
4

3
𝜇�⃗⃗⃗�(K⃗⃗⃗ ∙ �⃗�1)

− 𝑖�̃�𝐵𝜌0𝑣𝐴
2 {[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]�⃗⃗⃗� − (K⃗⃗⃗ ∙ �̂�0)

2
�⃗⃗⃗�𝟏

+ (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�𝟎} = 0 

3.63 

Collecting terms in �⃗�1, K⃗⃗⃗, �̂�0 and �̂� 

𝑖𝜌0 [𝜔 + �̃�𝐵𝑣𝐴
2(K⃗⃗⃗ ∙ �̂�0)

2
] �⃗⃗⃗�𝟏 − 𝑖𝜌0�̃�𝐵𝑣𝐴

2(�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�𝟎 −
𝜌0𝑔

𝑐0
2

𝑖𝑔𝑣1𝑧 + 𝑐0
2(K⃗⃗⃗ ∙ �⃗�1)

𝜔�̃�𝑝
�̂�

− 𝑖𝜌0 {
𝑖𝑔𝑣1𝑧 + 𝑐0

2(K⃗⃗⃗ ∙ �⃗�1)

𝜔�̃�𝑝
+
4𝜇

𝑖3𝜌0
(K⃗⃗⃗ ∙ �⃗�1)

− �̃�𝐵𝑣𝐴
2[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]} �⃗⃗⃗� 

3.64 

 

 

3.3.5 Significance of Coefficients �̃�𝑩 and �̃�𝒑  

In this section, the physical significance of coefficients �̃�𝐵(𝜎𝑒 , 𝜔) and �̃�𝑝(𝜅, 𝜔) is investigated. 

For a highly conductive plasma, i.e. 𝜎𝑒⟶∞, then �̃�𝐵 ⟶−1 𝜔⁄ . Similarly as 𝜅 ⟶ ∞, 

imaginary part of �̃�𝑝(𝜅, 𝜔) ⟶  ∞, which implies a lag between pressure and temperature 

fluctuations. For a ‘cold’ plasma (i.e. a low degree of ionization), as 𝜎𝑒 ⟶ 0, then  �̃�𝐵 ⟶ 0 

and �⃗⃗�1⟶ 0 implying such a plasma would only sustain electrostatic waves such as plasma 
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oscillations or ion acoustic waves, depending on 𝜔. As 𝜅 ⟶ 0, �̃�𝑝⟶ 1. This implies there are 

no thermal losses, therefore 𝑝1and 𝑇1 are in phase. 

To evaluate the validity of the NS characteristic equation developed for a PIP, we evaluate 

equation 3.64 for the idealized case of a fully ionized plasma of infinite conductivity (𝜎𝑒 ⟶

∞) neglecting the influence of gravity i.e. 𝑔 = 0 and visco-thermal losses i.e. 𝜇, 𝜅 = 0. Under 

these conditions, �̃�𝐵 = −1 𝜔⁄  and �̃�𝑝 = 1: 

𝑖𝜌0 [𝜔 −
1

𝜔
𝑣𝐴
2(K⃗⃗⃗ ∙ �̂�0)

2
] �⃗⃗⃗�𝟏 +

𝑖𝜌0
𝜔
𝑣𝐴
2(�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�𝟎

− 𝑖𝜌0 {
𝑐0
2(K⃗⃗⃗ ∙ �⃗�1)

𝜔
−
1

𝜔
𝑣𝐴
2[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]} �⃗⃗⃗� 

3.65 

Rearranging, multiplying 3.65 by −𝜔 𝑖𝜌0⁄  

[−𝜔2 + 𝑣𝐴
2(K⃗⃗⃗ ∙ �̂�0)

2
] �⃗⃗⃗�𝟏 − 𝑣𝐴

2(�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�𝟎

+ {(𝑐0
2 + 𝑣𝐴

2)(K⃗⃗⃗ ∙ �⃗�1) − 𝑣𝐴
2(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1)}�⃗⃗⃗� 

3.66 

Equation 3.66 is a ‘’textbook example’’ of the dispersion relation [see, for instance, Schunk 

and Nagy (2009)] for characteristic waves that can propagate in a single component, highly 

conducting plasma. 

 

 

3.3.6 Solving the Characteristic Equation in a PIP 

Equation 3.64 is the dispersion relation for characteristic waves that can propagate in a PIP. 

The waves may be classified as electrostatic (�⃗⃗�1 ≠ 0, �⃗⃗�1 = 0) or electromagnetic (�⃗⃗�1 ≠ 0, �⃗⃗�1 ≠

0) while their polarizations can be longitudinal (�⃗⃗⃗� ∥  �⃗�1)  or transverse(�⃗⃗⃗� ⊥  �⃗�1).  

Three modes exist to 3.64 depending on relative direction/orientation of vectors �⃗�1, K⃗⃗⃗ 

and  �̂�0. 
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3.3.6.1 Case I: Ordinary/Pure Acoustic Wave (�⃗⃗⃗� ∥ �⃗⃗⃗�𝟏 𝐚𝐧𝐝 �⃗⃗⃗� ∥ �̂�𝟎) 

In this mode, the acoustic wave propagates along the lines of the magnetic field as shown in 

Figure 15 below. 

 

Figure 15: Pure acoustic mode 

�⃗⃗⃗� = 𝐾�̂�,   �̂�0 ≡ �̂� and �⃗�1 = 𝑣1𝑧�̂� 

�⃗⃗⃗� ∙ �̂�0 = 𝐾, �⃗⃗⃗� ∙ �⃗�1 = 𝐾𝑣1𝑧, �̂�0 ∙ �⃗�1 = 𝑣1𝑧 

3.67 

Substituting 3.67 into 3.64 

𝑖𝜌0[𝜔 + �̃�𝐵𝑣𝐴
2𝐾2]𝑣1𝑧�̂� − 𝑖𝜌0�̃�𝐵𝑣𝐴

2𝐾2𝑣1𝑧�̂� −
𝜌0𝑔

𝑐𝑠
2

𝑖𝑔𝑣1𝑧 + 𝑐0
2𝐾𝑣1𝑧

𝜔�̃�𝑝
�̂�

− 𝑖𝜌0 {
𝑖𝑔𝑣1𝑧 + 𝑐0

2𝐾𝑣1𝑧

𝜔�̃�𝑝
+
4𝜇

𝑖3𝜌0
𝐾𝑣1𝑧 + �̃�𝐵𝑣𝐴

2[𝐾𝑣1𝑧 − 𝐾𝑣1𝑧]}𝐾�̂� 

3.68a 

which further reduces to  

−(
𝑖𝑐0
2

𝜔�̃�𝑝
+
4𝜇

3𝜌0
)𝐾2 + 𝑖 (𝜔 −

𝑔2

𝜔𝑐0
2�̃�𝑝

) = 0 
3.68b 

3.68b can be cast in form of an effective frequency and phase speed of sound as follows: 



 

42 
 

𝐾2 =

[𝜔2 −
𝑔2

𝑐0
2�̃�𝑝

]

[
𝑐0
2

�̃�𝑝
− 𝑖
4𝜔𝜇
3𝜌0

]

 

 

3.68c 

For a lossless (𝜇, 𝜅 = 0) medium and neglecting gravity i.e. 𝑔 = 0, equation 3.68c reduces to 

dispersion relation, 𝐾2 = 𝜔2 𝑐0
2⁄  for an ‘ordinary’ acoustic wave (Pierce, 1981) which is found 

in any acoustic textbook. Substituting for �̃�𝑝 , 3.68b can be written explicitly as follows: 

(𝑖4𝜇𝑐0
2𝐶𝜅)𝐾

4 + (4𝜇𝜔𝑐0
2 + 3𝜌0𝜔𝑐0

2𝐶𝜅 + 𝑖3𝜌0𝑐0
4)𝐾2 + 3𝑖𝜌0(𝑔

2 −𝜔2𝑐0
2) = 0 3.68d 

where 

𝐶𝜅 =
𝜅(𝛾 − 1)𝛽𝑝𝑇0

𝜌0𝑐𝑝
,       �̃�𝑝(𝜅, 𝜔) ≡ 1 + 𝑖 [𝐶𝜅

𝐾2

𝜔
] 

3.61b 

Solving 3.68d analytically for 𝐾 is tedious, if not impossible. Hence, a numerical solution is 

sought for 𝐾 in MATLAB. In evaluating this model, 𝐾 was calculated by solving the 

dispersion relation 3.68d at an altitude of 100 km, the following wavenumbers were 

obtained for 𝑓 = 0.5 𝐻𝑧 (𝐾𝑛~0.0002).  

�̃�1 = 0.01110806 + 𝑖0.00000952,⟹ 𝑐 ≈ 283 𝑚𝑠−1 & ∝ ≈ 0.083 𝑑𝐵(𝑘𝑚)−1  3.69 

�̃�2 = 0.01223192 + 𝑖14.27466025,⟹ 𝑐 ≈ 257 𝑚𝑠−1 & ∝ ≈ 123,990 𝑑𝐵(𝑘𝑚)−1  3.70 

The other two solution are mirror images of the 3.69 and 3.70, with their real and imaginary 

parts being negative. 
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K 

3.3.6.2 Case II: Alfvén Wave (�⃗⃗⃗⃗� ⊥ �⃗⃗⃗�𝟏 𝐚𝐧𝐝 �⃗⃗⃗⃗� ∥ �̂�𝟎) 

In this mode, a transverse wave propagates along the lines of the magnetic field. The wave 

‘plucks’ the magnetic field lines.  

 

Figure 16: Alfven mode 

�⃗⃗⃗� = 𝐾�̂�,   �̂�0 ≡ �̂� and �⃗�1 = 𝑣1�̂�  𝑣1𝑧 = 0 

�⃗⃗⃗� ∙ �̂�0 = 𝐾, �⃗⃗⃗� ∙ �⃗�1 = 0, �̂�0 ∙ �⃗�1 = 0 

3.71 

Inserting 3.71 into 3.64, the following equation is obtained 

𝑖𝜌0[𝜔 + �̃�𝐵𝑣𝐴
2𝐾2]𝑣1�̂� = 0 3.72a 

The resulting dispersion relation is  

𝜔 + �̃�𝐵𝑣𝐴
2𝐾2 = 0 3.72b 

3.72b can be cast in terms of frequency and an ‘effective’ Alfvén wave speed as follows: 

𝐾2 =
𝜔2

−𝜔�̃�𝐵𝑣𝐴
2 

3.72c 

For an idealized ( 𝜎𝑒 ⟶∞) medium, equation 3.72c reduces to dispersion relation, 𝐾2 =

𝜔2 𝑣𝐴
2⁄  for an Alfvén wave (Schunk and Nagy, 2009). Substituting for �̃�𝐵 , 3.72c can be 

written explicitly as follows: 
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(𝜔2 + 𝐶𝑒
2𝑣𝐴
4)𝐾2 − (𝜔2𝐶𝑒

2𝑣𝐴
2 + 𝑖𝜔3𝐶𝑒) = 0 3.72d 

where 

𝐶𝑒 = 𝜇0𝜎𝑒 ,       �̃�𝐵(𝜎𝑒 , 𝜔) =
𝑖𝐶𝑒

(𝐾2 − 𝑖𝜔𝐶𝑒)
=

𝑖

(
𝐾2

𝐶𝑒
− 𝑖𝜔)

 
3.53b 

3.72d is solved for 𝐾 at 100 𝑘𝑚 for 𝑓 = 0.5 𝐻𝑧, the following wavenumber is obtained: 

�̃� = (1.40684163 + 𝑖1.40684163) × 10−6,  

⟹ 𝑣𝐴 ≈ 2,233,981 𝑚𝑠
−1 & ∝ ≈ 0.012 𝑑𝑏(𝑘𝑚)−1  

3.73 

This solution represents an evanescent mode (non-propagating). The Alfvén wave is an 

electromagnetic wave which is not the focus of this work. Next, the characteristic equation 

3.64 is evaluated for the magnetosonic wave. 
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𝐸1 

3.3.6.3 Case III: Magnetosonic Wave (�⃗⃗⃗⃗� ∥ �⃗⃗⃗�𝟏 𝐚𝐧𝐝 �⃗⃗⃗⃗� ⊥ �̂�𝟎) 

In this mode, the acoustic wave propagates perpendicularly to the magnetic field lines, 

causing compression and rarefaction of the magnetic field lines.  

 

Figure 17: Magnetosonic mode 

�⃗⃗⃗� = 𝐾𝑥,   �̂�0 ≡ �̂� and �⃗�1 = 𝑣1�̂�  𝑣1𝑧 = 0 

K⃗⃗⃗ ∙ �̂�0 = 0, K⃗⃗⃗ ∙ �⃗�1 = 𝐾𝑣1, �̂�0 ∙ �⃗�1 = 0 

3.74 

Inserting 3.74 into 3.64 

𝑖𝜌0𝜔𝑣1𝑥 −
𝜌0𝑔𝐾𝑣1

𝜔�̃�𝑝
�̂� − 𝑖𝜌0 [

𝑐0
2

𝜔�̃�𝑝
+
4𝜇

𝑖3𝜌0
− �̃�𝐵𝑣𝐴

2]𝐾2𝑣1𝑥 
3.75 

From 3.75, two dispersion relations are obtained. The first is: 

−
𝜌0𝑔𝐾

𝜔�̃�𝑝
= 0 

3.76a 

substituting 3.61a into 3.75a, the following representation of 3.75a is obtained  

[𝜅(𝛾 − 1)𝛽𝑝𝑇0]𝐾
2 + 𝑖𝜔𝜌0𝑐𝑝 = 0 3.76b 

For a lossless medium(𝜅 = 0), 𝐾 = 0. However, for a thermal (𝜅 ≠ 0) medium, the following 

wavenumber is obtained at an altitude of 100 𝑘𝑚 for 𝑓 = 0.5 𝐻𝑧: 
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�̃� = 0.35193443 − 𝑖0.35193443,⟹ 𝑐 ≈ 9 𝑚𝑠−1 & ∝ ≈ 3057 𝑑𝑏(𝑘𝑚)−1 3.77 

This represents a non-propagating ‘thermal-like’ mode considering that its occurrence solely 

depends on 𝜅 ≠ 0. Hence 𝑐 ≈ 9 𝑚/𝑠 is not a sound speed but a thermal wave speed.  

The second magnetosonic dispersion relation obtained from 3.75 is 

−[
𝑐0
2

𝜔�̃�𝑝
+
4𝜇

𝑖3𝜌0
− �̃�𝐵𝑣𝐴

2]𝐾2 +𝜔 = 0 
3.78a 

3.78a can be cast in terms of frequency and an ‘effective’ magnetosonic wave speed as 

follows: 

𝐾2 =
𝜔2

[
𝑐0
2

�̃�𝑝
+
4𝜔𝜇
𝑖3𝜌0

− 𝜔�̃�𝐵𝑣𝐴
2]

 
3.78b 

For a lossless (𝜇, 𝜅 = 0) and ideal ( 𝜎𝑒 ⟶∞) medium, equation 3.78b reduces to dispersion 

relation, 𝐾2 = 𝜔2 (𝑐0
2 + 𝑣𝐴

2)⁄  for a magnetosonic wave (Schunk and Nagy, 2009).  

3.78a can also be expressed as follows: 

−𝑖4𝜇𝐶𝜅𝐾
6 − [𝑖3𝜌0(𝑣𝐴

2𝐶𝜅𝐶𝑒 + 𝑐0
2) + 4𝜇𝜔(1 + 𝐶𝜅𝐶𝑒) + 3𝜔𝜌0𝐶𝜅]𝐾

4

+ [𝑖3𝜔2𝜌0(1 + 𝐶𝜅𝐶𝑒) + 𝑖4𝜇𝜔
2𝐶𝑒 − 3𝜔𝜌0𝐶𝑒(𝑐0

2 + 𝑣𝐴
2)]𝐾2 + 3𝜔3𝜌0𝐶𝑒 = 0 

3.78c 

3.78c is solved for 𝐾 at 100 𝑘𝑚, and the following wavenumbers are obtained: 

�̃�1 = 0.01110806 + 𝑖0.00000952,⟹ 𝑐 ≈ 283 𝑚𝑠−1 & ∝ ≈ 0.083 𝑑𝐵(𝑘𝑚)−1 3.79 

�̃�2 = 0.01223192 + 𝑖14.27466025,⟹ 𝑐 ≈ 257 𝑚𝑠−1 & ∝ ≈ 123,990 𝑑𝐵(𝑘𝑚)−1 3.80 

�̃�3 = 0.00000079 + 𝑖0.00000079,⟹ 𝑐 ≈ 3,978,300 𝑚𝑠−1 & ∝ ≈ 0.007 𝑑𝐵(𝑘𝑚)−1 3.81 

The first two solutions are same as those of the pure acoustic mode, while the third is an 

evanescent ‘electromagnetic-like’ wave. 

 

 



 

47 
 

3.3.6.4 Case IV: (�⃗⃗⃗⃗� ⊥ �⃗⃗⃗�𝟏, �⃗⃗⃗⃗� ⊥ �̂�𝟎 𝐚𝐧𝐝 �̂�𝟎 ⊥ �⃗⃗⃗�𝟏) 

For this case, K⃗⃗⃗ ∙ �̂�0 = 0, K⃗⃗⃗ ∙ �⃗�1 = 0, �̂�0 ∙ �⃗�1 = 0 and 𝑣1𝑧 = 0. Under these conditions, 3.64 

reduces to trivial solution, 𝜔 = 0. 

 

 

 Acoustics Energy Loss Mechanism 

In this section, the acoustic absorption in the presence of ambient and fluctuating magnetic 

fields is sought explicitly as intensity losses. The goal here is to estimate the additional 

absorption occurring when work is done by the wave to cause magnetic field perturbations. 

This approach is, at this stage, speculative: it represents a preliminary basis for extending 

the “usual” treatment of intensity dissipation--based on thermo-viscous losses--to include 

electro-magnetic effects. Considering a medium with small viscosity and thermal 

conductivity, the direct method is to obtain the attenuation coefficient of acoustic waves via 

the Energy Dissipation Corollary (EDC), based on the energy balance equation expressed in 

conservative form (Pierce, 1981): 

𝜕𝑡𝑤 + ∇ ∙ 𝐼 = −D 3.82 

The terms are defined as follows: 

𝜕𝑡𝑤 is the time rate of change of acoustic energy, 𝑤.  

∇ ∙ 𝐼 is the net rate of outflow of acoustic energy through surface area of the fluid volume.  

𝐼 = 𝑝�⃗� is the acoustic intensity measured in 𝑊𝑚−2. 

D is the acoustic energy dissipated per unit volume and time. 
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3.4.1 The Magneto-fluid Stress Tensor 

In order to account for the effect of electric and magnetic forces, the Maxwell stress tensor is 

added to the fluid stress tensor (previously defined). Since the plasma is neutral, only the 

magnetic contribution to Maxwell stress tensor is considered.  

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑣𝑖𝑠𝑐 + 𝜎𝑖𝑗

𝑚𝑎𝑔
= −𝑝𝛿𝑖𝑗 + 𝜎𝑖𝑗

′ −
𝐵2

2𝜇0
𝛿𝑖𝑗 +

𝐵𝑖𝐵𝑗

𝜇0
 

 

 

collecting like terms, the following representation is obtained: 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑣𝑖𝑠𝑐 + 𝜎𝑖𝑗

𝑚𝑎𝑔
= −(𝑝 +

𝐵2

2𝜇0
)𝛿𝑖𝑗 + 𝜇Φ𝑖𝑗 +

𝐵𝑖𝐵𝑗

𝜇0
 

3.83 

Expanding the 1st term of 3.83  

𝑝 +
𝐵2

2𝜇0
= 𝑝0 + 𝑝1 +

(�⃗⃗�0 + �⃗⃗�1)
2

2𝜇0
= (𝑝0 +

𝐵0
2

2𝜇0
) + (𝑝1 +

�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

) 
3.84 

i.e. ambient and perturbed net (i.e. magneto-fluid) pressures, respectively (keeping terms of 

order 1 in perturbed quantities). 

 

 

3.4.2 The Momentum Balance Equation 

𝜌0 𝜕𝑡�⃗�1 ≅ ∇ ∙ 𝜎 + 𝜌�⃗� = ∇ ∙ (𝜎
𝑣𝑖𝑠𝑐 + 𝜎𝑚𝑎𝑔) + 𝜌0 �⃗� + 𝜌1�⃗� 3.85 

The RHS of 3.85 can be expanded by substituting 3.83 and 3.84 as follows: 

∇ ∙ 𝜎 + 𝜌�⃗� = −∇0 (𝑝0 +
𝐵0
2

2𝜇0
) �⃡� − ∇(𝑝1 +

�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

) �⃡� + 𝜇∇ ∙ Φ⃗⃗⃡ +
1

𝜇0
(∇ ∙ �⃗⃗��⃗⃗�) + 𝜌0 �⃗� + 𝜌1�⃗� 

3.86 

Applying hydrostatic equilibrium and using vector calculus identities on the magnetic terms, 

the RHS of Equation 3.86 can be transformed as shown below. For the first magnetic term, 

∇0 (
𝐵0
2

2𝜇0
⁄ ) = 0 because the geomagnetic field is assumed uniform. The second magnetic 

term in 3.86 becomes: 
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∇( �⃗⃗�0 ∙ �⃗⃗�1) = (�⃗⃗�0 ∙ ∇)�⃗⃗�1 + (�⃗⃗�1 ∙ ∇)�⃗⃗�0 + �⃗⃗�0 × (∇ × �⃗⃗�1) + �⃗⃗�1 × (∇ × �⃗⃗�0)

= (�⃗⃗�0 ∙ ∇)�⃗⃗�1 + (�⃗⃗�1 ∙ ∇)�⃗⃗�0 + �⃗⃗�0 × (∇ × �⃗⃗�1) 

3.87 

where ∇ × �⃗⃗�0 = 𝜇0𝐽0 = 0, since it is assumed that �⃗⃗�0 = 0. The third magnetic term on the 

RHS of 3.86 involves the divergence of �⃗⃗��⃗⃗� dyad. The dyad’s 𝑖𝑗 component can be expanded 

in terms of first-order field fluctuations, as: 

1

𝜇0
(∇ ∙ �⃗⃗��⃗⃗�) =

1

𝜇0
∑�̂�𝑖𝜕𝑗(𝐵0𝑖𝐵0𝑗 + 𝐵0𝑖𝐵1𝑗 + 𝐵1𝑖𝐵0𝑗)

𝑖𝑗

 
 

where terms have been kept to order 1. Since the ambient geomagnetic field is considered 

uniform. 

∑�̂�𝑖𝜕𝑗(𝐵0𝑖𝐵0𝑗) = 0

𝑖𝑗

  

Hence, 

1

𝜇0
(∇ ∙ �⃗⃗�𝑖�⃗⃗�𝑗) =

1

𝜇0
∑�̂�𝑖𝜕𝑗(𝐵0𝑖𝐵1𝑗 + 𝐵1𝑖𝐵0𝑗)

𝑖𝑗

 

=
1

𝜇0
∑�̂�𝑖(𝐵0𝑖𝜕𝑗𝐵1𝑗 + 𝐵0𝑗𝜕𝑗𝐵1𝑖)

𝑖𝑗

 

1

𝜇0
∑�̂�𝑖(𝐵0𝑖𝜕𝑗𝐵1𝑗 + 𝐵0𝑗𝜕𝑗𝐵1𝑖)

𝑖𝑗

=
1

𝜇0
[�⃗⃗�0(∇ ∙ �⃗⃗�1) + (�⃗⃗�0 ∙ ∇)�⃗⃗�1] 

1

𝜇0
(∇ ∙ �⃗⃗�𝑖�⃗⃗�𝑗) =

1

𝜇0
[�⃗⃗�0(∇ ∙ �⃗⃗�1) + (�⃗⃗�0 ∙ ∇)�⃗⃗�1] 

 

 

 

 

 

 

3.88 

Conservation of momentum equation (3.85) becomes:  

𝜌0 𝜕𝑡�⃗�1 ≅ −∇𝑝1 −
1

𝜇0
[(�⃗⃗�0 ∙ ∇)�⃗⃗�1 + (�⃗⃗�1 ∙ ∇)�⃗⃗�0 + �⃗⃗�0 × (∇ × �⃗⃗�1)] + 𝜇∇ ∙ Φ⃗⃗⃡

+
1

𝜇0
[�⃗⃗�0(∇ ∙ �⃗⃗�1) + (�⃗⃗�0 ∙ ∇)�⃗⃗�1] + 𝜌1�⃗� 

 

3.89a 
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Hence, 3.89a becomes: 

𝜌0 𝜕𝑡�⃗�1 ≅ −∇𝑝1 −
1

𝜇0
[�⃗⃗�0 × (∇ × �⃗⃗�1)] + 𝜇∇ ∙ Φ⃗⃗⃡ + +𝜌1�⃗� 

3.89b 

𝜌0 𝜕𝑡�⃗�1 ≅ −∇𝑝1 − �⃗⃗�0 × 𝐽1 + 𝜇∇ ∙ Φ⃗⃗⃡ + +𝜌1�⃗� 3.89c 

where Ampere’s law for the magnetic fluctuation was used, in the form: 

∇ × �⃗⃗�1 = 𝜇0𝐽1 

 

 

3.4.3 The Energy Balance Equation 

𝜌0𝑇0𝜕𝑡𝑠1 ≅ ∇ ∙ (𝜅∇𝑇1) +
(�⃗⃗�0 ∙ �⃗⃗�0)(∇ ∙ �⃗�1)

𝜇0
 

3.90 

To derive the equation for the conservation of acoustic energy, the following ‘recipe’ is 

followed (Pierce, 1981): 

�⃗�1 ∙ 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 +

(

 
𝑝1 +

�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

𝜌0
)

 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑡𝑦 + (
𝑇1
𝑇0
)𝐸𝑛𝑡𝑟𝑜𝑝𝑦 

3.91 

First, the LHS of 3.91 is evaluated as follows 

�⃗�1 ∙ 𝜌0 𝜕𝑡�⃗�1 + (
𝑝1
𝜌0
+
�⃗⃗�0 ∙ �⃗⃗�1
𝜇0𝜌0

)𝜕𝑡𝜌1 +
𝑇1
𝑇0
𝜌0𝑇0𝜕𝑡𝑠1 

3.92 

Applying product rule to the first term of 3.92 i.e. 

𝜕𝑡(�⃗�1 ∙ �⃗�1) = �⃗�1 ∙ 𝜕𝑡�⃗�1 + 𝜕𝑡�⃗�1 ∙ �⃗�1  ⟹ �⃗�1 ∙ 𝜕𝑡�⃗�1 = 
1
2⁄  𝜕𝑡𝑣1

2 3.93 

Similarly, applying the product rule to second term of 3.92 i.e. 

�⃗⃗�0 ∙ �⃗⃗�1
𝜇0𝜌0

𝜕𝑡𝜌1 = 𝜕𝑡 (
𝜌1
𝜌0

�⃗⃗�0
𝜇0
∙ �⃗⃗�1) −

𝜌1
𝜌0

�⃗⃗�0
𝜇0
∙ (𝜕𝑡�⃗⃗�1) 

3.94 

Substituting 3.93 and 3.94 into 3.92 and substituting 𝑝1 𝑐0
2⁄  for 𝜌1, the LHS of 3.92 becomes: 

𝜕𝑡 (
1

2
𝜌0 𝑣1

2) + 𝜕𝑡 (
1

2

𝑝1
2
 

𝜌0 𝑐0
2 +

𝜌0 𝑇0
2𝑐𝑝

𝑠1
2) + 𝜕𝑡 (

𝜌1
𝜌0

�⃗⃗�0
𝜇0
∙ �⃗⃗�1) −

𝜌1
𝜌0

�⃗⃗�0
𝜇0
∙ (𝜕𝑡 �⃗⃗�1) 

3.95 
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Next, the RHS of 3.92 is: 

−�⃗�1 ∙ ∇𝑝1 + 𝜇�⃗�1 ∙ (∇ ∙ Φ⃗⃗⃡) − �⃗�1 ∙ (�⃗⃗�0 × 𝐽1) + 𝜌1�⃗�1 ∙ �⃗� − (𝑝1 +
�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

)∇ ∙ �⃗�1 +
𝑇1
𝑇0
(𝜅∇2𝑇1)

+
𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ �⃗⃗�0)(∇ ∙ �⃗�1) 

 

3.96 

𝜇�⃗�1 ∙ (∇ ∙ Φ⃗⃗⃡) ≡ 𝜇�⃗�1 ∙∑ �̂�𝑖𝜕𝑗(Φ𝑖𝑗)

𝑖𝑗

=
4

3
𝜇�⃗�1 ∙ ∇(∇ ∙ �⃗�1) 

 3.97 

Applying product rule to the RHS of 3.97, the following equation is obtained. 

𝜇�⃗�1 ∙∑�̂�𝑖𝜕𝑗
𝑖𝑗

Φ𝑖𝑗 =
4

3
𝜇{∇ ∙ [�⃗�1(∇ ∙ �⃗�1)] − (∇ ∙ �⃗�1)

2} 
3.98 

Applying product rule to sixth term of 3.96, we obtain the following equation. 

𝜅

𝑇0
𝑇1∇ ∙ (∇𝑇1) =

𝜅

𝑇0
[∇ ∙ 𝑇1(∇𝑇1) − (∇𝑇1)

2] 3.99 

Applying vector calculus identities to fifth and seventh terms of 3.96, we obtain the following 

equations. 

(
�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

)∇ ∙ �⃗�1 =
1

𝜇0
{∇ ∙ [(�⃗⃗�0 ∙ �⃗⃗�1)�⃗�1] − �⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1)} 

3.100 

(�⃗⃗�0 ∙ �⃗⃗�0)(∇ ∙ �⃗�1) = (�⃗⃗�0 × �⃗⃗�0) ∙ (∇ × �⃗�1) + (�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1)  

(�⃗⃗�0 ∙ �⃗⃗�0)(∇ ∙ �⃗�1) = (�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) 3.101 

Substituting 3.98, 3.99 and 3.101 into 3.96, the following representation of the RHS of 3.92 

is obtained: 

−∇ ∙ [𝑝1�⃗�1 −
𝑇1
𝑇0
(𝜅∇𝑇1)] +

4

3
𝜇{∇ ∙ [�⃗�1(∇ ∙ �⃗�1)] − (∇ ∙ �⃗�1)

2} − �⃗�1 ∙ (�⃗⃗�0 × 𝐽1) + 𝜌1�⃗�1 ∙ �⃗�

−
1

𝜇0
{∇ ∙ [(�⃗⃗�0 ∙ �⃗⃗�1)�⃗�1] − �⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1)} −

𝜅

𝑇0
(∇𝑇1)

2

+
𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) 

 

3.102 
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Grouping terms with divergence in 3.102, we obtain: 

−∇ ∙ [𝑝1�⃗�1 −
𝑇1
𝑇0
(𝜅∇𝑇1) −

4

3
𝜇�⃗�1(∇ ∙ �⃗�1) +

1

𝜇0
[(�⃗⃗�0 ∙ �⃗⃗�1)�⃗�1]] 

3.103a 

The other terms (without divergence) in 3.102 are: 

−
4

3
𝜇(∇ ∙ �⃗�1)

2 − �⃗�1 ∙ (�⃗⃗�0 × 𝐽1) + 𝜌1�⃗�1 ∙ �⃗� −
𝜅

𝑇0
(∇𝑇1)

2 +
1

𝜇0
�⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1)

+
𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) 

3.103b 

Comparing the LHS (3.95) and RHS (3.103a and b) with 3.82 i.e. 𝜕𝑡𝑤 + ∇ ∙ 𝐼 = −D 

𝑤 =
1

2
(𝜌0 𝑣1

2 +
𝑝1
2
 

𝜌0 𝑐0
2 +

𝜌0 𝑇0𝑠1
2

𝑐𝑝
) +

𝜌1
𝜌0

�⃗⃗�0 ∙ �⃗⃗�1
𝜇0

 

𝐼 = 𝑝1�⃗�1 −
𝑇1
𝑇0
(𝜅∇𝑇1) −

4

3
𝜇�⃗�1(∇ ∙ �⃗�1) +

1

𝜇0
[(�⃗⃗�0 ∙ �⃗⃗�1)�⃗�1] 

D =
4

3
𝜇(∇ ∙ �⃗�1)

2 + �⃗�1 ∙ (�⃗⃗�0 × 𝐽1) − 𝜌1�⃗�1 ∙ �⃗� +
𝜅

𝑇0
(∇𝑇1)

2 −
1

𝜇0
�⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1)

−
𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) −
𝜌1
𝜌0

�⃗⃗�0
𝜇0
∙ (𝜕𝑡 �⃗⃗�1) 

3.104a 

 

3.104b 

 

3.104c 

Now that the energy dissipation for corollary for an acoustic wave in a PIP has been derived, 

the next step is to determine the attenuation coefficient. This is done in the next section. 

 

 

3.4.4 Determination of Plane Wave Attenuation Coefficient 

The classical attenuation coefficient (∝𝑐𝑙) is found using the relation (Pierce, 1981) 

𝐷𝑎𝑣 = |𝐷| ≈ 2 ∝𝑐𝑙 𝐼𝑎𝑣,   𝑤ℎ𝑒𝑟𝑒 𝐼𝑎𝑣 =
𝑝1
2

𝜌0𝑐0

̅̅ ̅̅ ̅̅
 

3.105a 

Implicit in the expression for 𝐼𝑎𝑣, is the assumption that: magnetic pressure is ‘insignificant’ 

compared to the acoustic pressure. Since magnetic effects have been added into our 
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framework, 3.105a can be adapted to finding an expression for magneto-classical 

attenuation coefficient, ∝𝑐𝑙
𝑚𝑎𝑔

 as follows: 

 ∝𝑐𝑙
𝑚𝑎𝑔

≈
1

2

𝐷𝑎𝑣
𝐼𝑎𝑣

 
3.105b 

Each term of D (3.104c) is evaluated in the subsequent sections.  

 

 

3.4.5 Evaluation of the Dissipative (D) Terms 

For plane waves, the particle velocity (�⃗�1) is obtained as:  

�⃗�1 =
𝑝1
𝜌0𝑐0

𝑣   3.106 

𝑇1 is defined in terms of 𝑝1 in equation 3.58. Its gradient is: 

∇𝑇1 = (
𝛽𝑝𝑇0
𝜌0𝑐𝑝

)∇𝑝1 = (
𝛽𝑝𝑇0
𝜌0𝑐𝑝

) 𝑖�⃗⃗⃗�𝑝1 ⇒ (∇𝑇1)
2 = −(

𝛽𝑝𝑇0𝐾

𝜌0𝑐𝑝
)

2

(𝑝1)
2 

   3.107 

 

 

3.4.5.1 Evaluation of the Term  𝟒 𝟑⁄ 𝝁(𝛁 ∙ �⃗⃗⃗�𝟏)
𝟐 

Inserting 3.106 and, ∇≡ i�⃗⃗⃗� where, �⃗⃗⃗� = 𝐾�̂� the following representation is obtained: 

4

3
𝜇(∇ ∙ �⃗�1)

2 = −
4

3
𝜇(�̂� ∙ 𝑣)

2
(
𝐾𝑝1
𝜌0𝑐0

)
2

 
3.108 

 

 

3.4.5.2 Evaluation of the term �⃗⃗⃗�𝟏 ∙ (�⃗⃗⃗�𝟎 × �⃗�𝟏) 

From equation 3.57, 

�⃗⃗�0 × 𝐽1 ≈ 𝑖�̃�𝐵𝜌0𝑣𝐴
2 {[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)]K⃗⃗⃗ − (K⃗⃗⃗ ∙ �̂�0)

2
�⃗�1 + (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)�̂�0} 

3.109 
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hence, 

�⃗�1 ∙ (�⃗⃗�0 × 𝐽1) =  𝑖�̃�𝐵𝜌0𝑣𝐴
2 {[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1) − (K⃗⃗⃗ ∙ �⃗�1)](�⃗�1 ∙ K⃗⃗⃗) − (K⃗⃗⃗ ∙ �̂�0)

2
(�⃗�1 ∙ �⃗�1)

+ (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)(�⃗�1 ∙ �̂�0)} 

3.110 

Inserting 3.106 and �⃗⃗⃗� = 𝐾�̂�, the following equation is obtained and further simplified. 

�⃗�1 ∙ (�⃗⃗�0 × 𝐽1) =  𝑖�̃�𝐵𝜌0𝑣𝐴
2 {[(K⃗⃗⃗ ∙ �̂�0)(�̂�0 ∙ �⃗�1)(�⃗�1 ∙ K⃗⃗⃗) − (K⃗⃗⃗ ∙ �⃗�1)

2
] − (K⃗⃗⃗ ∙ �̂�0)

2
(�⃗�1 ∙ �⃗�1)

+ (�̂�0 ∙ K⃗⃗⃗)(K⃗⃗⃗ ∙ �⃗�1)(�⃗�1 ∙ �̂�0)} 

3.111a 

=  𝑖�̃�𝐵𝜌0𝑣𝐴
2 (
𝐾𝑝1
𝜌0𝑐0

)
2

{[(�̂� ∙ �̂�0)(�̂�0 ∙ 𝑣)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)
2
] − (�̂� ∙ �̂�0)

2
(�̂� ∙ 𝑣)

+ (�̂�0 ∙ �̂�)(�̂� ∙ 𝑣)(𝑣 ∙ �̂�0)} 

3.111b 

�⃗�1 ∙ (�⃗⃗�0 × 𝐽1) =  𝑖�̃�𝐵𝜌0𝑣𝐴
2 (
𝐾𝑝1
𝜌0𝑐0

)
2

[2(�̂� ∙ �̂�0)(�̂�0 ∙ 𝑣)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)
2
− (�̂� ∙ �̂�0)

2
] 

3.111c 

 

 

3.4.5.3 Evaluation of the Term 𝝆𝟏�⃗⃗⃗�𝟏 ∙ �⃗⃗⃗� 

From the linearized mass continuity equation 

𝜕𝑡𝜌1 = −𝜌0∇ ∙ �⃗�1  

−𝑖𝜔𝜌1 = −𝑖𝜌0𝐾�̂� ∙
𝑝1
𝜌0𝑐0

𝑣  

𝜌1 =
𝐾𝑝1
𝜔𝑐0

�̂� ∙ 𝑣 
3.112 

substituting 3.112 into the 3rd term of 104c, the following expression is obtained and further 

simplified: 

𝜌1�⃗�1 ∙ �⃗� = −
𝐾𝑝1
𝜔𝑐0

�̂� ∙ 𝑣
𝑝1
𝜌0𝑐0

𝑣 ∙ 𝑔�̂� = −
𝑔𝜌0
𝜔𝐾

(
𝐾𝑝1
𝜌0𝑐0

)
2

(�̂� ∙ 𝑣)(𝑣 ∙ �̂�) 
 

𝜌1�⃗�1 ∙ �⃗� = −
𝑔𝜌0𝑐0
𝜔2

(
𝐾𝑝1
𝜌0𝑐0

)
2

(�̂� ∙ 𝑣)(𝑣 ∙ �̂�) 
3.113 
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3.4.5.4 Evaluation of the Term 𝜿 𝑻𝟎⁄ (𝛁𝑻𝟏)
𝟐 

Applying 3.107 to the fourth term of 3.104c, the following is obtained: 

𝜅

𝑇0
(∇𝑇1)

2 = −
𝜅

𝑇0
(
𝛽𝑝𝑇0𝐾

𝜌0𝑐𝑝
)

2

(𝑝1)
2 

3.114 

Inserting the following expression for 𝛽𝑝
2 (Pierce, 1981) 

𝛽𝑝
2 =

(𝛾 − 1)𝑐𝑝

𝑇0𝑐0
2  

𝜅

𝑇0
(∇𝑇1)

2 = −
𝜅

𝑇0

(𝛾 − 1)𝑐𝑝

𝑇0𝑐0
2 (

𝑇0𝐾

𝜌0𝑐𝑝
)

2

(𝑝1)
2 = −

(𝛾 − 1)𝜅

𝑐𝑝
(
𝐾𝑝1
𝜌0𝑐0

)
2

 

3.115 

 

3.116 

 

3.4.5.5 Evaluation of the Term 𝟏 𝝁𝟎⁄ �⃗⃗⃗�𝟏 ∙ 𝛁(�⃗⃗⃗�𝟎 ∙ �⃗⃗⃗�𝟏) 

Applying 3.52 i.e. �⃗⃗�1 = �̃�𝐵(𝜎𝑒 , 𝜔)[(K⃗⃗⃗ ∙ �⃗⃗�0)�⃗�1 − (K⃗⃗⃗ ∙ �⃗�1)�⃗⃗�0] to the fifth term of 3.104c: 

1

𝜇0
�⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1) =

�̃�𝐵
𝜇0
�⃗�1 ∙ ∇[(�⃗⃗�0 ∙ �⃗�1)(K⃗⃗⃗ ∙ �⃗⃗�0) − 𝐵0

2(K⃗⃗⃗ ∙ �⃗�1)] 
3.117 

Substituting for  �⃗�1, �⃗⃗�0, ∇ and �⃗⃗⃗� 

1

𝜇0
�⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1) =

�̃�𝐵
𝜇0

𝑝1
𝜌0𝑐0

𝑣 ∙ i𝐾�̂� [(𝐵0�̂�0 ∙
𝑝1
𝜌0𝑐0

𝑣) (𝐾�̂� ∙ 𝐵0�̂�0) − 𝐵0
2 (𝐾�̂� ∙

𝑝1
𝜌0𝑐0

𝑣)] 
 

1

𝜇0
�⃗�1 ∙ ∇(�⃗⃗�0 ∙ �⃗⃗�1) =

𝑖�̃�𝐵𝐵0
2

𝜇0
[(�̂�0 ∙ 𝑣)(�̂� ∙ �̂�0)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)

2
] (
𝐾𝑝1
𝜌0𝑐0

)
2

 
3.118 

 

 

3.4.5.6 Evaluation of the term 
𝑻𝟏
𝝁𝟎𝑻𝟎
⁄ (�⃗⃗⃗�𝟎 ∙ 𝛁)(�⃗⃗⃗�𝟎 ∙ �⃗⃗⃗�𝟏) 

Substituting for 𝑇1, �⃗⃗�0, ∇ and �⃗�1 in the sixth term of 3.104c: 

𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) =
1

𝜇0𝑇0
(
𝛽𝑝𝑇0
𝜌0𝑐𝑝

𝑝1) (𝐵0�̂�0 ∙ i𝐾�̂�) (𝐵0�̂�0 ∙
𝑝1
𝜌0𝑐0

𝑣) 
 

=
𝑖𝐾𝐵0

2𝛽𝑝𝑐0
2

𝜇0𝑐𝑝𝑐0𝐾
2 (�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣)

𝐾2𝑝1
2

𝜌0
2𝑐0
2  
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𝛽𝑝
2 =

(𝛾 − 1)𝑐𝑝

𝑇0𝑐0
2 ⟹ 𝛽𝑝 =

1

𝑐0
√
(𝛾 − 1)𝑐𝑝

𝑇0
 

 

𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) =
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝐾

1

𝑐0
√
(𝛾 − 1)𝑐𝑝

𝑇0
(�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣) (

𝐾𝑝1
𝜌0𝑐0

)
2

 

 

𝑇1
𝜇0𝑇0

(�⃗⃗�0 ∙ ∇)(�⃗⃗�0 ∙ �⃗�1) =
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝜔

√
(𝛾 − 1)𝑐𝑝

𝑇0
(�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣) (

𝐾𝑝1
𝜌0𝑐0

)
2

 

3.119 

 

 

3.4.5.7 Evaluati0n of the Term (𝝆𝟏 𝝆𝟎𝝁𝟎⁄ )�⃗⃗⃗�𝟎 ∙ (𝝏𝒕�⃗⃗⃗�𝟏) 

Substituting for 𝜌1, �⃗⃗�0, �⃗⃗�1 and 𝜕𝑡 = −𝑖𝜔 in seventh term of 3.104c: 

𝜌1
𝜇0𝜌0

�⃗⃗�0 ∙ (𝜕𝑡 �⃗⃗�1) = −
𝑖𝜔�̃�𝐵
𝜇0𝜌0

 
𝑝1

𝑐0
2 �̂� ∙ 𝑣 [(𝐵0�̂�0 ∙

𝑝1
𝜌0𝑐0

𝑣) (𝐾�̂� ∙ 𝐵0�̂�0) − 𝐵0
2 (𝐾�̂� ∙

𝑝1
𝜌0𝑐0

𝑣)] 
 

𝜌1
𝜇0𝜌0

�⃗⃗�0 ∙ (𝜕𝑡 �⃗⃗�1) = −
𝑖𝜔�̃�𝐵𝐵0

2

𝜇0𝑐0
(�̂� ∙ 𝑣)[(�̂�0 ∙ 𝑣)(�̂� ∙ �̂�0) − 𝐵0

2(�̂� ∙ 𝑣)]
𝐾𝑝1

2

𝜌0
2𝑐0
2 

 

𝜌1
𝜇0𝜌0

�⃗⃗�0 ∙ (𝜕𝑡�⃗⃗�1) = −
𝑖�̃�𝐵𝐵0

2

𝜇0
[(�̂�0 ∙ 𝑣)(�̂� ∙ �̂�0)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)

2
] (
𝐾𝑝1
𝜌0𝑐0

)
2

 
3.120 

Adding all the evaluated terms of D together, one obtains the following expression:  

𝐷 = −
4

3
𝜇(�̂� ∙ 𝑣)

2
−
(𝛾 − 1)𝜅

𝑐𝑝
(
𝐾𝑝1
𝜌0𝑐0

)
2

+
𝑔𝜌0𝑐0
𝜔2

(
𝐾𝑝1
𝜌0𝑐0

)
2

(�̂� ∙ 𝑣)(𝑣 ∙ �̂�)

+  𝑖�̃�𝐵𝜌0𝑣𝐴
2 [2(�̂� ∙ �̂�0)(�̂�0 ∙ 𝑣)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)

2
− (�̂� ∙ �̂�0)

2
] (
𝐾𝑝1
𝜌0𝑐0

)
2

−
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝜔

√
(𝛾 − 1)𝑐𝑝

𝑇0
(�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣) (

𝐾𝑝1
𝜌0𝑐0

)
2

 

 

 

3.121 

Further simplification of above equation yields the following equation: 
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𝐷 = {−
4

3
𝜇(�̂� ∙ 𝑣)

2
−
(𝛾 − 1)𝜅

𝑐𝑝
+
𝑔𝜌0𝑐0
𝜔2

(�̂� ∙ 𝑣)(𝑣 ∙ �̂�)

+  𝑖�̃�𝐵𝜌0𝑣𝐴
2 [2(�̂� ∙ �̂�0)(�̂�0 ∙ 𝑣)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)

2
− (�̂� ∙ �̂�0)

2
]

−
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝜔

√
(𝛾 − 1)𝑐𝑝

𝑇0
(�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣)} (

𝐾𝑝1
𝜌0𝑐0

)
2

 

 

 

 

3.122 

Following Pierce’s (1981) ‘recipe’, 𝐷𝑎𝑣 is time average, �̅� found as follows: 

𝐷𝑎𝑣 ≅ 𝐷𝑥̅̅̅̅ + 𝑖𝐷𝑦̅̅̅̅   ⟹   ∝𝑐𝑙
𝑚𝑎𝑔

=∝𝑥 (𝐷𝑥̅̅̅̅ ) + 𝑖 ∝𝑦 (𝐷𝑦̅̅̅̅ )  

The real part of  ∝𝑐𝑙
𝑚𝑎𝑔

 represents absorption while the imaginary part represents dispersion. 

From equation 3.105b,   

 ∝𝑐𝑙
𝑚𝑎𝑔

≈
1

2

𝐷𝑎𝑣
𝐼𝑎𝑣

 
3.105c 

Hence, the attenuation coefficient can be expressed as follows: 

∝𝑐𝑙
𝑚𝑎𝑔

=
1

2

𝜔2

𝜌0𝑐0
3 {
4

3
𝜇(�̂� ∙ 𝑣)

2
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝑔𝜌0𝑐0
𝜔2

(�̂� ∙ 𝑣)(𝑣 ∙ �̂�)

−  𝑖�̃�𝐵𝜌0𝑣𝐴
2 [2(�̂� ∙ �̂�0)(�̂�0 ∙ 𝑣)(�̂� ∙ 𝑣) − (�̂� ∙ 𝑣)

2
− (�̂� ∙ �̂�0)

2
]

+
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝜔

√
(𝛾 − 1)𝑐𝑝

𝑇0
(�̂�0 ∙ �̂�)(�̂�0 ∙ 𝑣)} 

 

 

3.123 

 

 

3.4.5.8 The Attenuation Coefficient for Acoustic Waves 

The following attenuation coefficient is obtained from 3.123 when acoustic waves propagate 

along the direction of the magnetic field i.e. �̂� ∙ 𝑣 = 1, �̂� ∙ �̂�0 = 1, �̂�0 ∙ 𝑣 = 1 and 𝑣 ∙ �̂� = 1. 

∝𝑐𝑙
𝑚𝑎𝑔

=
1

2

𝜔2

𝜌0𝑐0
3 [
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝑔𝜌0𝑐0
𝜔2

+
𝑖𝐵0

2𝑐0
𝜇0𝑐𝑝𝜔

√
(𝛾 − 1)𝑐𝑝

𝑇0
] 

 3.125 
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In the absence of thermo-viscous losses (𝜇 =  𝜅 = 0) and neglecting gravity (𝑔 = 0), ∝𝑐𝑙
𝑚𝑎𝑔

 is 

purely imaginary, meaning that it only contributes to wave dispersion. The wave number, 

expressed as: 

�̃�(𝜔) =
𝜔

𝑐0
+ 𝑖 ∝𝑐𝑙

𝑚𝑎𝑔
 3.126a 

becomes, in this case: 

�̃�(𝜔) = [
𝜔

𝑐0
−
1

2

𝜔𝐵0
2

𝜌0𝑐0
2𝜇0𝑐𝑝

√
(𝛾 − 1)𝑐𝑝

𝑇0
] + 𝑖

1

2

𝜔2

𝜌0𝑐0
3
[
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝑔𝜌0𝑐0
𝜔2

] 

3.126b 

= [
𝜔

𝑐0
−
1

2

𝜔𝑣𝐴
2

𝑐0
2𝑐𝑝

√
(𝛾 − 1)𝑐𝑝

𝑇0
] + 𝑖

1

2

𝜔2

𝜌0𝑐0
3
[
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝑔𝜌0𝑐0
𝜔2

] 

 

Evaluating the above wave number at 100 km for 𝑓 = 0.5 𝐻𝑧 yields the following value: 

�̃� = 0.01100913 − 𝑖0.00005199,⟹ 𝑐 ≈ 286 𝑚𝑠−1 & ∝ ≈ −0.452 𝑑𝐵(𝑘𝑚)−1 3.127 

The wave number 3.127 is then compared to those obtained in the pure acoustic mode via 

the MHD approach i.e. 

�̃�1 = 0.01110739 + 𝑖0.00000952,⟹ 𝑐 ≈ 283 𝑚𝑠−1 & ∝ ≈ 0.083 𝑑𝐵(𝑘𝑚)−1  

�̃�2 = 0.01223192 + 𝑖14.27466025,⟹ 𝑐 ≈ 257 𝑚𝑠−1 & ∝ ≈ 123,990 𝑑𝐵(𝑘𝑚)−1  

The wave number obtained via EDC approach lends credence to the validity of the 𝑟𝑒[�̃�] 

obtained via MHD. The attenuation coefficient obtained via EDC represents energy gain and 

is nearly 5 times larger than its MHD counterpart. 

 

 

3.4.5.9 The Attenuation Coefficient for Magnetosonic Waves 

When the acoustic wave propagates perpendicularly to the magnetic field lines  

(�̂� ∙ 𝑣 = 1, �̂� ∙ �̂�0 = 0, �̂�0 ∙ 𝑣 = 0 and 𝑣 ∙ �̂� = 0). The following attenuation coefficient is 

obtained:  
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∝𝑐𝑙
𝑚𝑎𝑔

=
1

2

𝜔2

𝜌0𝑐0
3 {
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
+  𝑖�̃�𝐵𝜌0𝑣𝐴

2} 
3.128 

⟹ �̃�(𝜔) = [
𝜔

𝑐0
−
1

2

𝜔2�̃�𝐵𝑣𝐴
2

𝑐0
3
] + 𝑖

1

2

𝜔2

𝜌0𝑐0
3
[
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
] 

3.129 

Substituting the following expression into 3.129, 

�̃�𝐵(𝜎𝑒 , 𝜔) =
𝑖

(
𝐾2

𝐶𝑒
− 𝑖𝜔)

 

and after some complex number manipulations, the following expression is found: 

∝𝑐𝑙
𝑚𝑎𝑔

=
1

2

𝜔2

𝜌0𝑐0
3
[
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝜌0𝑣𝐴

2𝐾2𝐶𝑒

𝐾4 +𝜔2𝐶𝑒
2 − 𝑖

𝜔𝜌0𝑣𝐴
2𝐶𝑒

𝐾4 +𝜔2𝐶𝑒
2] 

3.130 

⟹ �̃�(𝜔) = [
𝜔

𝑐0
+
1

2

𝜔3𝑣𝐴
2𝐶𝑒

𝑐0
3(𝐾4 +𝜔2𝐶𝑒

2)
] + 𝑖

1

2

𝜔2

𝜌0𝑐0
3
[
4𝜇

3
+
(𝛾 − 1)𝜅

𝑐𝑝
−
𝜌0𝑣𝐴

2𝐾2𝐶𝑒

𝐾4 +𝜔2𝐶𝑒
2] 

3.131 

Evaluating the above wave number at 100 km for 𝑓 = 0.5 𝐻𝑧 yields the following numbers: 

�̃�1 = 0.01110808 + 𝑖0.00000952,  

⟹ 𝑐 ≈ 283 𝑚𝑠−1 & ∝ ≈ 0.083 𝑑𝐵(𝑘𝑚)−1 

3.132a 

 �̃�2 = 0.00000142 + 𝑖0.00000142,  

⟹ 𝑐 ≈ 2,259,160 𝑚𝑠−1 & ∝ ≈ 0.012 𝑑𝐵(𝑘𝑚)−1 

3.132b 

The first solution agrees with �̃�1 obtained in the MHD approach shown below 

�̃�1 = 0.01110806 + 𝑖0.00000952,⟹ 𝑐 ≈ 283 𝑚𝑠−1 & ∝ ≈ 0.083 𝑑𝐵(𝑘𝑚)−1  

�̃�2 = 0.01223192 + 𝑖14.27466025,⟹ 𝑐 ≈ 257 𝑚𝑠−1 & ∝ ≈ 123,990 𝑑𝐵(𝑘𝑚)−1  

�̃�3 = 0.00000079 + 𝑖0.00000079,⟹ 𝑐 ≈ 3,978,300 𝑚𝑠−1 & ∝ ≈ 0.007 𝑑𝐵(𝑘𝑚)−1  

 



 

Chapter 4: Conclusions and Recommendations 

 

 Continuum vs. Non-continuum Mechanics 

The non-continuum (BU) mechanics approach yielded lower infrasound absorption 

compared to the continuum (NS) mechanics. This reduction can be attributed to the 

interdependence of the stress tensor and the heat flux in the non-continuum mechanics. 

It is expected that, the predicted amplitudes of thermospheric returns produced by the non-

continuum approach would show better agreement with measured signals. The decrease in 

attenuation of acoustic waves produced by the non-continuum approach becomes more 

pronounced with increasing infrasound frequency. It also increases with altitude, up to 

about 40% decrease at 160 𝑘𝑚. The Burnett treatment results in dispersion, increased sound 

speed up to about 9% was noted for 𝑓 = 0.5 𝐻𝑧 (see Figure 11). 

 

 

 Electric and Magnetic Effects on Infrasound Dispersion and Attenuation 

The two wavenumbers obtained for the pure acoustic mode were also produced by the 

magnetosonic mode in addition to a third solution of the magnetosonic wave which is likely 

non-propagating. In the pure acoustic mode, the acoustic wave does no work on the 

magnetic field i.e. no magnetic field fluctuations are produced. The wave propagates along 

the magnetic field lines. Hence, the first solution of both the pure acoustic and magnetosonic 

modes i.e. the wave number with attenuation on the order of 10−2 can be regarded as a 

purely acoustic wave. While, the second solution with attenuation on the order of 105can be 

regarded as purely magnetosonic wave. The relatively high attenuation of this magnetosonic 

wave can be attributed to the work done by the wave on the magnetic field. The 

magnetosonic wave propagates perpendicularly to the magnetic field lines causing periodic 

bunching of the magnetic field lines, as shown in Figure 18 below: 
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Figure 18: Representation of a magnetosonic wave 

 

 

4.2.1 Pure Acoustic Wave    

In this study, it was observed that the geomagnetic field causes dispersion of acoustic waves 

(see dependence of 𝑅𝑒[�̃�(𝜔)] on 𝐵0 in equation 3.98b). How be it ‘insignificant’ (at 

100 𝑘𝑚 𝑓𝑜𝑟 𝑓 = 0.5 𝐻𝑧: 281 𝑚𝑠−1 without electromagnetic effects compared to 283 𝑚𝑠−1 

with such effects). Also, the dispersion due to magnetic effects increases with field strength 

as shown in wave number 3.98b. Dispersion of the magnetosonic wave is also noted as 

expected (see dependence of 𝑅𝑒[�̃�(𝜔)] on 𝑣𝐴 𝑜𝑟 𝐵0 in equation 3.104). 

 

 

 Recommendations for Future Work 

In order to refine and expand the scope of the work done in this study, the following should 

be considered: 

a) For a neutral thermosphere: 

1) Significant molecular absorption mechanisms due to other air constituents such 

as 𝑂2, 𝐴𝑟 and 𝐶𝑂2 should be considered.  

2) Evaluation of absorption models for a more realistic air mixture i.e. not just 𝑁2 − 𝑂2 

mixture. 
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3) Thermospheric winds, i.e. �⃗�0 ≠ 0 should be accounted for in the absorption models 

since their contributions to the local ambient sound speed can be significant, 

affecting ray paths. Conversely, thermospheric arrivals can be inverted to infer the 

winds in the lower thermosphere. 

4) Consideration of other cooling and heating mechanisms (e.g. radiative cooling, tidal 

and gravity-wave heating) within the thermosphere. 

b) For a charged thermosphere: 

1) Application of the MHD approach using the Burnett approximation of the BTE via 

the associated coupled equations for the stress tensor and heat flux.  

2)  Extension of the MHD approach to a two-fluid framework, in which neutrals, on one 

side, and charged species (electrons and ions) on the other side are treated separately. For 

example, the electro-dynamical coupling of the two categories of particles will be expressed 

by the full version of the ‘two-fluid’ Ohm’s law (similar to equation 3.38). 

3) Refinement of absorption models developed by considering the variation with 

altitude of the acceleration due to gravity (important for very low frequency waves), 𝑔 = 𝑔(𝑧) 

and ambient temperature, 𝑇0 = 𝑇0(𝑧). 

4) Contribution of molecular relaxation processes to the dispersion and absorption of 

multi-component partially ionized plasma environment. 

5) Implementation of up-to-date values for the ambient concentrations and 

thermophysical parameters of electrons, ions and neutral, based on current observations 

and/or general circulation models. 
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